ﻻ يوجد ملخص باللغة العربية
We present VLT intermediate resolution spectroscopy of UY Vol, the optical counterpart of the LMXB X-ray burster EXO 0748-676. By using Doppler tomography we detect narrow components within the broad He II 4542 A, 4686 A and 5412 A emission lines. The phase, velocity and narrowness of these lines are consistent with their arising from the irradiated hemisphere of the donor star, as has been observed in a number of LMXBs. Under this assumption we provide the first dynamical constraints on the stellar masses in this system. In particular, we measure K_2>K_em = 300 +/- 10 km/s. Using this value we derive 1 M_sun < M_1 < 2.4 M_sun and 0.11 < q < 0.28. We find M_1 > 1.5 M_sun for the case of a main sequence companion star. Our results are consistent with the presence of a massive neutron star as has been suggested by Ozel (2006), although we cannot discard the canonical value of ~1.4 M_sun.
X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent
We analyse four XMM-Newton observations of the neutron-star low-mass X-ray binary EXO 0748$-$676 in quiescence. We fit the spectra with an absorbed neutron-star atmosphere model, without the need for a high-energy (power-law) component; with a 95 per
Recently, the neutron star X-ray binary EXO 0748-676 underwent a transition to quiescence. We analyzed an XMM-Newton observation of this source in quiescence, where we fitted the spectrum with two different neutron-star atmosphere models. From the fi
We report the detection of pulsations at 552 Hz in the rising phase of two type-I (thermonuclear) X-ray bursts observed from the accreting neutron star EXO 0748-676 in 2007 January and December, by the Rossi X-ray Timing Explorer. The fractional ampl
The accretion behaviour in low-mass X-ray binaries (LMXBs) at low luminosities, especially at <E34 erg/s, is not well known. This is an important regime to study to obtain a complete understanding of the accretion process in LMXBs, and to determine i