ﻻ يوجد ملخص باللغة العربية
We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well-represented by Fe lines. Relative abundances of light elements (CNO) and alpha-elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The log g parameter is known to better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of V-K (TYCHO V magnitude minus 2MASS Ks magnitude) and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe1-Fe2 balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, alpha elements, and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where alpha-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars.
Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a deca
We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar-type stars, from spectral type F5 to K2 and luminosity classes III to V. For some stars we can use direct techni
We study 23 previously published Kepler targets to perform a consistent grid-based Bayesian asteroseismic analysis and compare our results to those obtained via the Asteroseismic Modelling Portal (AMP). We find differences in the derived stellar para
We use various method to extract surface rotation periods of Kepler targets exhibiting solar-like oscillations and compare their results.
Stellar structure and evolution can be studied in great detail by asteroseismic methods, provided data of high precision are available. We determine the effective temperature (Teff), surface gravity (log g), metallicity, and the projected rotational