ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond pulses and dynamics of molecular photoexcitation: RbCs example

107   0   0.0 ( 0 )
 نشر من قبل Andrei Derevianko
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the dynamics of molecular photoexcitation by unchirped femtosecond laser pulses using RbCs as a model system. This study is motivated by a goal of optimizing a two-color scheme of transferring vibrationally-excited ultracold molecules to their absolute ground state. In this scheme the molecules are initially produced by photoassociation or magnetoassociation in bound vibrational levels close to the first dissociation threshold. We analyze here the first step of the two-color path as a function of pulse intensity from the low-field to the high-field regime. We use two different approaches, a global one, the Wavepacket method, and a restricted one, the Level by Level method where the number of vibrational levels is limited to a small subset. The comparison between the results of the two approaches allows one to gain qualitative insights into the complex dynamics of the high-field regime. In particular, we emphasize the non-trivial and important role of far-from-resonance levels which are adiabatically excited through vertical transitions with a large Franck-Condon factor. We also point out spectacular excitation blockade due to the presence of a quasi-degenerate level in the lower electronic state. We conclude that selective transfer with femtosecond pulses is possible in the low-field regime only. Finally, we extend our single-pulse analysis and examine population transfer induced by coherent trains of low-intensity femtosecond pulses.



قيم البحث

اقرأ أيضاً

Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, since the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. We performed a gas-phase electron diffraction experiment using Megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved an unprecedented combination of 100 fs root-mean-squared (RMS) temporal resolution and sub-Angstrom (0.76 {AA}) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.
The observation of chemical reactions on the time scale of the motion of electrons and nuclei has been made possible by lasers with ever shortened pulse lengths. Superfluid helium represents a special solvent that permits the synthesis of novel class es of molecules that have eluded dynamical studies so far. However, photoexcitation inside this quantum solvent triggers a pronounced response of the solvation shell, which is not well understood. Here we present a mechanistic description of the solvent response to photoexcitation of indium (In) dopant atoms inside helium nanodroplets (He$_mathrm{N}$), obtained from femtosecond pump-probe spectroscopy and time-dependent density functional theory simulations. For the In-He$_mathrm{N}$ system, part of the excited state electronic energy leads to expansion of the solvation shell within 600 fs, initiating a collective shell oscillation with a period of about 30 ps. These coupled electronic and nuclear dynamics will be superimposed on intrinsic photoinduced processes of molecular systems inside helium droplets.
Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^ +$. The branching ratio for these two channels is CEP-dependent; the OD$^+$/OH$^+$ ratio (relative to that measured with CEP-unstabilized pulses) varies from 150% to over 300% at different CEP values, opening prospects of isotope-dependent control over molecular bond breakage. The kinetic energy released as HOD$^{2+}$ Coulomb explodes is also CEP-dependent. Formidable theoretical challenges are identified for proper insights into the overall dynamics which involve non-adiabatic field ionization from HOD to HOD$^+$ and, thence, to HOD$^{2+}$ via electron rescattering.
We combined high-resolution Fourier-transform spectroscopy and large-scale electronic structure calculation to study energy and radiative properties of the high-lying (3)1{Pi} and (5)1{Sigma}+ states of the RbCs molecule. The laser-induced (5)1{Sigma }+(4)1{Sigma}+(3)1{Pi}-A(2)1{Sigma}+ b(1)3{Pi} fluorescence (LIF) spectra were recorded by the Bruker IFS-125(HR) spectrometer in the frequency range { u} 5500 to 10000cm-1 with the instrumental resolution of 0.03 cm-1. The rotational assignment of the observed LIF progressions, which exhibit irregular vibrational-rotational spacing due to strong spin-orbit interaction between A1{Sigma}+ and b3(Pi) states was based on the coincidences between observed and calculated energy differences. The required rovibronic term values of the strongly perturbed A-b complex have been calculated by a coupled-channels approach for both 85Rb133Cs and 87Rb133Cs isotopologs with accuracy of about 0.01 cm-1, as demonstrated in A. Kruzins et al. [J. Chem. Phys. 141, 184309 (2014)]. The experimental energies of the upper (3)1(Pi) and (5)1{Sigma}+ states were involved in a direct-potential-fit analysis performed in the framework of inverted perturbation approach. Quasirelativistic ab initio calculations of the spin-allowed (3)1{Pi},(5)1{Sigma}+- (1-4)1{Sigma}+(1-3)1{Pi} transition dipole moments were performed. Radiative lifetimes and vibronic branching ratios of radiative transitions from the (3)1{Pi} and (5)1{Sigma}+ states were evaluated. To elucidate the origin of the {Lambda}-doubling effect in the (3)1{Pi} state, the angular coupling (3)1{Pi}-(1-5)1{Sigma}+ electronic matrix elements were calculated and applied for the relevant q-factors estimate. The intensity distributions simulated for the particular (5)1{Sigma}+(3)1{Pi}-A-b LIF progressions have been found to be remarkably close to their experimental counterparts.
114 - Chuan Cheng 2021
We investigate the role of nuclear motion and strong-field-induced electronic couplings during the double ionization of deuterated water using momentum-resolved coincidence spectroscopy. By examining the three-body dicationic dissociation channel, D$ ^{+}$/D$^{+}$/O, for both few- and multi-cycle laser pulses, strong evidence for intra-pulse dynamics is observed. The extracted angle- and energy-resolved double ionization yields are compared to classical trajectory simulations of the dissociation dynamics occurring from different electronic states of the dication. In contrast with measurements of single photon double ionization, pronounced departure from the expectations for vertical ionization is observed, even for pulses as short as 10~fs in duration. We outline numerous mechanisms by which the strong laser field can modify the nuclear wavefunction en-route to final states of the dication where molecular fragmentation occurs. Specifically, we consider the possibility of a coordinate-dependence to the strong-field ionization rate, intermediate nuclear motion in monocation states prior to double ionization, and near-resonant laser-induced dipole couplings in the ion. These results highlight the fact that, for small and light molecules such as D$_2$O, a vertical-transition treatment of the ionization dynamics is not sufficient to reproduce the features seen experimentally in the strong field coincidence double-ionization data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا