ترغب بنشر مسار تعليمي؟ اضغط هنا

Bond-selective fragmentation of water molecules with intense, ultrafast, carrier envelope phase stabilized laser pulses

150   0   0.0 ( 0 )
 نشر من قبل Deepak Mathur
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^+$. The branching ratio for these two channels is CEP-dependent; the OD$^+$/OH$^+$ ratio (relative to that measured with CEP-unstabilized pulses) varies from 150% to over 300% at different CEP values, opening prospects of isotope-dependent control over molecular bond breakage. The kinetic energy released as HOD$^{2+}$ Coulomb explodes is also CEP-dependent. Formidable theoretical challenges are identified for proper insights into the overall dynamics which involve non-adiabatic field ionization from HOD to HOD$^+$ and, thence, to HOD$^{2+}$ via electron rescattering.



قيم البحث

اقرأ أيضاً

Driving laser wakefield acceleration with extremely short, near single-cycle laser pulses is crucial to the realisation of an electron source that can operate at kHz-repetition rate while relying on modest laser energy. It is also interesting from a fundamental point of view, as the ponderomotive approximation is no longer valid for such short pulses. Through particle-in-cell simulations, we show how the plasma response becomes asymmetric in the plane of laser polarization, and dependent on the carrier-envelope phase (CEP) of the laser pulse. For the case of self-injection, this in turn strongly affects the initial conditions of injected electrons, causing collective betatron oscillations of the electron beam. As a result, the electron beam pointing, electron energy spectrum and the direction of emitted betatron radiation become CEP-dependent. For injection in a density gradient the effect on beam pointing is reduced and the electron energy spectrum is CEP-independent, as electron injection is mostly longitudinal and mainly determined by the density gradient. Our results highlight the importance of controlling the CEP in this regime for producing stable and reproducible relativistic electron beams and identify how CEP effects may be observed in experiments. In the future, CEP control may become an additional tool to control the energy spectrum or pointing of the accelerated electron beam.
We report on tunnel ionization of Xe by 2-cycle, intense, infrared laser pulses and its dependence on carrier-envelope-phase (CEP). At low values of optical field ($E$), the ionization yield is maximum for cos-like pulses with the dependence becoming stronger for higher charge states. At higher $E$-values, the CEP dependence either washes out or flips. A simple phenomenological model is developed that predicts and confirms the observed results. CEP effects are seen to persist for 8-cycle pulses. Unexpectedly, electron rescattering plays an unimportant role in the observed CEP dependence. Our results provide fresh perspectives in ultrafast, strong-field ionization dynamics of multi-electron systems that lie at the core of attosecond science.
We present a simple quantum mechanical model to describe Coulomb explosion of H$_2^+$ by short, intense, infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid for pulses shorter than 50 fs where the process of dissociation prior to ionization is negligible. The results are compared with recent experimental results for the proton energy spectrum [I. Ben-Itzhak et al., Phys. Rev. Lett. 95, 073002 (2005), B. D. Esry et al., Phys. Rev. Lett. 97, 013003 (2006)]. The predictions of the model reproduce the profile of the spectrum although the peak energy is slightly lower than the observations. For comparison, we also present results obtained by two different tunneling models for this process.
The impact of the carrier-envelope phase (CEP) of an intense multi-cycle laser pulse on the radiation of an electron beam during nonlinear Compton scattering is investigated. An interaction regime of the electron beam counterpropagating to the laser pulse is employed, when pronounced high-energy x-ray double peaks emerge at different angles near the backward direction relative to the initial electron motion. This is achieved in the relativistic interaction domain, with the additional requirements that the electron energy is much lower than that necessary for the electron reflection condition at the laser peak, and the stochasticity effects in the photon emission are weak. The asymmetry parameter of the double peaks in the angular radiation distribution is shown to serve as a sensitive and uniform measure for the CEP of the laser pulse. The method demonstrates unprecedented sensitivity to subtle CEP-effects up to 10-cycle laser pulses and can be applied for the characterization of extremely strong laser pulses in present and near future laser facilities.
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained fro m simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schrodinger equation, for the case of H$_2^+$ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا