ﻻ يوجد ملخص باللغة العربية
We examine the consequences of, and apply, the formalism developed in Terquem (2021) for calculating the rate $D_R$ at which energy is exchanged between fast tides and convection. In this previous work, $D_R$ (which is proportional to the gradient of the convective velocity) was assumed to be positive in order to dissipate the tidal energy. Here we argue that, even if energy is intermittently transferred from convection to the tides, it must ultimately return to the convective flow and transported efficiently to the stellar surface on the convective timescale. This is consistent with, but much less restrictive than, enforcing $D_R>0$. Our principle result is a calculation of the circularization timescale of late-type binaries, taking into account the full time evolution of the stellar structure. We find that circularization is very efficient during the PMS phase, inefficient during the MS, and once again efficient when the star approaches the RGB. These results are in much better agreement with observations than earlier theories. We also apply our formalism to hot Jupiters, and find that tidal dissipation in a Jupiter mass planet yields a circularization timescale of 1 Gyr for an orbital period of 3 d, also in good overall agreement with observations. The approach here is novel, and the apparent success of the theory in resolving longstanding timescale puzzles is compelling.
Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binari
We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 +/- 2 AU (1.058 +/- 0.007 arcsec) from the B9-type star Kappa And. The planet was detected with Subaru/HiCIAO during th
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present
Aims: Our goal is to investigate how the strength of episodic accretion bursts depends on eccentricity. Methods: We investigate the binary trigger hypothesis in longer-period (>20yr) binaries by carrying out three-dimensional magnetohydrodynamical (M
In this work we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically