ﻻ يوجد ملخص باللغة العربية
We apply the theory of families of (phi,Gamma)-modules to trianguline families as defined by Chenevier. This yields a new definition of Kisins finite slope subspace as well as higher dimensional analogues. Especially we show that these finite slope spaces contain eigenvarieties for unitary groups as closed subspaces. This implies that the representations arising from overconvergent p-adic automorphic forms on certain unitary groups are trianguline when restricted to the local Galois group.
We consider stacks of filtered phi-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack
We investigate the relation between p-adic Galois representations and overconvergent (phi,Gamma)-modules in families. Especially we construct a natural open subspace of a family of (phi,Gamma)-modules, over which it is induced by a family of Galois-representations.
We study compactifications of Drinfeld half-spaces over a finite field. In particular, we construct a purely inseparable endomorphism of Drinfelds half-space $Omega (V)$ over a finite field $k$ that does not extend to an endomorphism of the projectiv
We prove that the jacobian of a hyperelliptic curve $y^2=(x-t)h(x)$ has no nontrivial endomorphisms over an algebraic closure of the ground field $K$ of characteristic zero if $t in K$ and the Galois group of the polynomial $h(x)$ over $K$ is very bi
Let S be a split family of del Pezzo surfaces over a discrete valuation ring such that the general fiber is smooth and the special fiber has ADE-singularities. Let G be the reductive group given by the root system of these singularities. We construct