ترغب بنشر مسار تعليمي؟ اضغط هنا

Families of p-adic Galois representations and (phi,Gamma)-modules

161   0   0.0 ( 0 )
 نشر من قبل Eugen Hellmann
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Eugen Hellmann




اسأل ChatGPT حول البحث

We investigate the relation between p-adic Galois representations and overconvergent (phi,Gamma)-modules in families. Especially we construct a natural open subspace of a family of (phi,Gamma)-modules, over which it is induced by a family of Galois-representations.



قيم البحث

اقرأ أيضاً

211 - Eugen Hellmann 2010
We consider stacks of filtered phi-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack containing all classical points. Further we study a period morphism (defined by Pappas and Rapoport) from a stack parametrizing integral data and determine the image of this morphism.
212 - Eugen Hellmann 2012
We apply the theory of families of (phi,Gamma)-modules to trianguline families as defined by Chenevier. This yields a new definition of Kisins finite slope subspace as well as higher dimensional analogues. Especially we show that these finite slope s paces contain eigenvarieties for unitary groups as closed subspaces. This implies that the representations arising from overconvergent p-adic automorphic forms on certain unitary groups are trianguline when restricted to the local Galois group.
We use Scholzes framework of diamonds to gain new insights in correspondences between $p$-adic vector bundles and local systems. Such correspondences arise in the context of $p$-adic Simpson theory in the case of vanishing Higgs fields. In the presen t paper we provide a detailed analysis of local systems on diamonds for the etale, pro-etale, and the $v$-topology, and study the structure sheaves for all three topologies in question. Applied to proper adic spaces of finite type over $mathbb{C}_p$ this enables us to prove a category equivalence between $mathbb{C}_p$-local systems with integral models, and modules under the $v$-structure sheaf which modulo each $p^n$ can be trivialized on a proper cover. The flexibility of the $v$-topology together with a descent result on integral models of local systems allows us to prove that the trivializability condition in the module category may be checked on any normal proper cover. This result leads to an extension of the parallel transport theory by Deninger and the second author to vector bundles with numerically flat reduction on a proper normal cover.
176 - Ruochuan Liu , Daqing Wan 2016
For a global function field K of positive characteristic p, we show that Artin conjecture for L-functions of geometric p-adic Galois representations of K is true in a non-trivial p-adic disk but is false in the full p-adic plane. In particular, we pr ove the non-rationality of the geometric unit root L-functions.
75 - Zhiyou Wu 2021
We prove that both local Galois representations and $(varphi,Gamma)$-modules can be recovered from prismatic F-crystals, from which we obtain a new proof of the equivalence of Galois representations and $(varphi,Gamma)$-modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا