ﻻ يوجد ملخص باللغة العربية
By employing x-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimates of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping.
We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a g
It is important to study the van der Waals interface in emerging vertical heterostructures based on layered two-dimensional (2D) materials. Being atomically thin, 2D materials are susceptible to significant strains as well as charge transfer doping a
The electrical properties of graphene are known to be modified by chemical species that interact with it. We investigate the effect of doping of graphene-based devices by toluene (C6H5CH3). We show that this effect has a complicated character. Toluen
The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator is one of the key challenges of modern electronics. By employing angle resolved photoemission spectroscopy
We report a study of electronic transport in van der Waals heterostructures composed of flakes of the antiferromagnetic Mott insulator a-RuCl_3 placed on top of monolayer graphene Hall bars. While the zero-field transport shows a strong resemblance t