ترغب بنشر مسار تعليمي؟ اضغط هنا

Paramagnetic adsorbates on graphene: a charge transfer analysis

132   0   0.0 ( 0 )
 نشر من قبل Ortwin Leenaerts
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a graphene layer as calculated with ab initio methods can crucially depend on the size of the supercell used in the calculation. This has important consequences for adsorption studies involving paramagnetic molecules such as NO2 physisorbed on graphene or on carbon nanotubes.



قيم البحث

اقرأ أيضاً

It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here we deposited SWNT bundles on graphene-covered copper and SiO 2 substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO2 substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron f rom the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired $sigma $ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
By employing x-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimat es of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping.
Organic charge-transfer complexes (CTCs) formed by strong electron acceptor and strong electron donor molecules are known to exhibit exotic effects such as superconductivity and charge density waves. We present a low-temperature scanning tunneling mi croscopy and spectroscopy (LT-STM/STS) study of a two-dimensional (2D) monolayer CTC of tetrathiafulvalene (TTF) and fluorinated tetracyanoquinodimethane (F4TCNQ), self-assembled on the surface of oxygen-intercalated epitaxial graphene on Ir(111) (G/O/Ir(111)). We confirm the formation of the charge-transfer complex by dI/dV spectroscopy and direct imaging of the singly-occupied molecular orbitals. High-resolution spectroscopy reveals a gap at zero bias, suggesting the formation of a correlated ground state at low temperatures. These results point to the possibility to realize and study correlated ground states in charge-transfer complex monolayers on weakly interacting surfaces.
Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides (TMDCs) have recently shown great promise for high-performance optoelectronic applications. However, an in-depth understanding of the critical processes for de vice operation, namely interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS$_2$ heterostructures, by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS$_2$ following photoexcitation. We find that CT across graphene-WS$_2$ interfaces occurs via photo-thermionic emission for sub-A-exciton excitation, and direct hole transfer from WS$_2$ to the valence band of graphene for above-A-exciton excitation. Remarkably, we observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. These findings provide relevant insights to optimize further the performance of optoelectronic devices, in particular photodetection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا