ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach

289   0   0.0 ( 0 )
 نشر من قبل Aya Ishihara
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrophysical neutrinos are expected to be produced in the interactions of ultra-high energy cosmic-rays with surrounding photons. The fluxes of the astrophysical neutrinos are highly dependent on the characteristics of the cosmic-ray sources, such as their cosmological distributions. We study possible constraints on the properties of cosmic-ray sources in a model-independent way using experimentally obtained diffuse neutrino flux above 100 PeV. The semi-analytic formula is derived to estimate the cosmogenic neutrino fluxes as functions of source evolution parameter and source extension in redshift. The obtained formula converts the upper-limits on the neutrino fluxes into the constraints on the cosmic-ray sources. It is found that the recently obtained upper-limit on the cosmogenic neutrinos by IceCube constrains the scenarios with strongly evolving ultra-high energy cosmic-ray sources, and the future limits from an 1 km^3 scale detector are able to further constrain the ultra-high energy cosmic-rays sources with evolutions comparable to the cosmic star formation rate.



قيم البحث

اقرأ أيضاً

The ANtarctic Impulsive Transient Antenna (ANITA) NASA long-duration balloon payload completed its fourth flight in December 2016, after 28 days of flight time. ANITA is sensitive to impulsive broadband radio emission from interactions of ultra-high- energy neutrinos in polar ice (Askaryan emission). We present the results of two separate blind analyses searching for signals from Askaryan emission in the data from the fourth flight of ANITA. The more sensitive analysis, with a better expected limit, has a background estimate of $0.64^{+0.69}_{-0.45}$ and an analysis efficiency of $82pm2%$. The second analysis has a background estimate of $0.34^{+0.66}_{-0.16}$ and an analysis efficiency of $71pm6%$. Each analysis found one event in the signal region, consistent with the background estimate for each analysis. The resulting limit further tightens the constraints on the diffuse flux of ultra-high-energy neutrinos at energies above $10^{19.5}$ eV.
A fundamental question that can be answered in the next decade is: WHAT IS THE ORIGIN OF THE HIGHEST ENERGY COSMIC PARTICLES? The discovery of the sources of the highest energy cosmic rays will reveal the workings of the most energetic astrophysical environments in the recent universe. Candidate sources range from the birth of compact objects to explosions related to gamma-ray bursts or generated around supermassive black holes in active galactic nuclei. In addition to beginning a new era of high-energy astrophysics, the study of ultra-high energy cosmic rays will constrain the structure of the Galactic and extragalactic magnetic fields. The propagation of these particles from source to Earth also probes the cosmic background radiation and gives insight into particle interactions at orders of magnitude higher energy than can be achieved in terrestrial laboratories. Next generation observatories designed to study the highest energy cosmic rays will have unprecedented sensitivity to ultra-high energy photons and neutrinos, which will further illuminate the workings of the universe at the most extreme energies. For this challenge to be met during the 2010-2020 decade, a significant increase in the integrated exposure to cosmic rays above 6 1019 eV will be necessary. The technical capabilities for answering this open question are at hand and the time is ripe for exploring Charged Particle Astronomy.
The High Resolution Flys Eye experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen-Zatsepin-Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.
We develop a model for explaining the data of Pierre Auger Observatory (Auger) for Ultra High Energy Cosmic Rays (UHECR), in particular, the mass composition being steadily heavier with increasing energy from 3 EeV to 35 EeV. The model is based on th e proton-dominated composition in the energy range (1 - 3) EeV observed in both Auger and HiRes experiments. Assuming extragalactic origin of this component, we argue that it must disappear at higher energies due to a low maximum energy of acceleration, E_p^{max} sim (4 - 10) EeV. Under an assumption of rigidity acceleration mechanism, the maximum acceleration energy for a nucleus with the charge number Z is ZE_p^{max}, and the highest energy in the spectrum, reached by Iron, does not exceed (100 - 200) EeV. The growth of atomic weight with energy, observed in Auger, is provided by the rigidity mechanism of acceleration, since at each energy E=ZE_p^{max} the contribution of nuclei with Z < Z vanishes. The described model has disappointing consequences for future observations in UHECR: Since average energies per nucleon for all nuclei are less than (2 - 4) EeV, (i) pion photo-production on CMB photons in extragalactic space is absent; (ii) GZK cutoff in the spectrum does not exist; (iii) cosmogenic neutrinos produced on CMBR are absent; (iv) fluxes of cosmogenic neutrinos produced on infrared - optical background radiation are too low for registration by existing detectors and projects. Due to nuclei deflection in galactic magnetic fields, the correlation with nearby sources is absent even at highest energies.
We study the production of cosmogenic neutrinos and photons during the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs). For a wide range of models in cosmological evolution of source luminosity, composition and maximum energy we c alculate the expected flux of cosmogenic secondaries by normalizing our cosmic ray output to experimental spectra and comparing the diffuse flux of GeV-TeV gamma-rays to the experimental one measured by the Fermi satellite. Most of these models yield significant neutrino fluxes for current experiments like IceCube or Pierre Auger. Furthermore, we discuss the possibilities of signing the presence of UHE proton sources either within or outside the cosmic ray horizon using neutrinos or photons observations even if the cosmic ray composition becomes heavier at the highest energies. We discuss the possible constraints that could be brought on the UHECR origin from the different messengers and energy ranges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا