ﻻ يوجد ملخص باللغة العربية
A fundamental question that can be answered in the next decade is: WHAT IS THE ORIGIN OF THE HIGHEST ENERGY COSMIC PARTICLES? The discovery of the sources of the highest energy cosmic rays will reveal the workings of the most energetic astrophysical environments in the recent universe. Candidate sources range from the birth of compact objects to explosions related to gamma-ray bursts or generated around supermassive black holes in active galactic nuclei. In addition to beginning a new era of high-energy astrophysics, the study of ultra-high energy cosmic rays will constrain the structure of the Galactic and extragalactic magnetic fields. The propagation of these particles from source to Earth also probes the cosmic background radiation and gives insight into particle interactions at orders of magnitude higher energy than can be achieved in terrestrial laboratories. Next generation observatories designed to study the highest energy cosmic rays will have unprecedented sensitivity to ultra-high energy photons and neutrinos, which will further illuminate the workings of the universe at the most extreme energies. For this challenge to be met during the 2010-2020 decade, a significant increase in the integrated exposure to cosmic rays above 6 1019 eV will be necessary. The technical capabilities for answering this open question are at hand and the time is ripe for exploring Charged Particle Astronomy.
We develop a model for explaining the data of Pierre Auger Observatory (Auger) for Ultra High Energy Cosmic Rays (UHECR), in particular, the mass composition being steadily heavier with increasing energy from 3 EeV to 35 EeV. The model is based on th
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi
We present the main results on the energy spectrum and composition of the highest energy cosmic rays of energy exceeding 10$^{18}$ eV obtained by the High Resolution Flys Eye and the Southern Auger Observatory. The current results are somewhat contra
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic par
Astrophysical neutrinos are expected to be produced in the interactions of ultra-high energy cosmic-rays with surrounding photons. The fluxes of the astrophysical neutrinos are highly dependent on the characteristics of the cosmic-ray sources, such a