ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically driven metal-insulator transition in NaOsO3

333   0   0.0 ( 0 )
 نشر من قبل Stuart Calder
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic 1D lattice). One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and X-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in the light of recent reports of a Mott spin-orbit insulating state in other 5d oxides.



قيم البحث

اقرأ أيضاً

By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping is treated realistically within a supercell approach by replacing sodium with magnesium at different concentrations. Our data indicate that by increasing carrier concentration the system is subjected to two types of transition: (i) insulator to bad metal at low doping and low temperature and (ii) bad metal to metal at high doping and/or high-temperature. The predicted doping-induced insulator to metal transition (MIT) has similar traits with the temperature driven MIT reported in the undoped compound. Both develops in an itinerant background and exhibit a coupled electronic and magnetic behaviour characterized by the gradual quenching of the (pseudo)-gap associated with an reduction of the local spin moment. Unlike the temperature-driven MIT, chemical doping induces substantial modifications of the band structure and the MIT cannot be fully described as a Lifshitz process.
The magnetically driven metal-insulator transition (MIT) was predicted by Slater in the fifties. Here a long-range antiferromagnetic (AF) order can open up a gap at the Brillouin electronic band boundary regardless of the Coulomb repulsion magnitude. However, while many low-dimensional organic conductors display evidence for an AF driven MIT, in three-dimensional (3D) systems the Slater MIT still remains elusive. We employ terahertz and infrared spectroscopy to investigate the MIT in the NaOsO3 3D antiferromagnet. From the optical conductivity analysis we find evidence for a continuous opening of the energy gap, whose temperature dependence can be well described in terms of a second order phase transition. The comparison between the experimental Drude spectral weight and the one calculated through Local Density Approximation (LDA) shows that electronic correlations play a limited role in the MIT. All the experimental evidence demonstrates that NaOsO3 is the first known 3D Slater insulator.
We report on the structural, magnetic, and electronic properties of two new double-perovskites synthesized under high pressure; Pb2CaOsO6 and Pb2ZnOsO6. Upon cooling below 80 K, Pb2CaOsO6 simultaneously undergoes a metal--insulator transition and dev elops antiferromagnetic order. Pb2ZnOsO6, on the other hand, remains a paramagnetic metal down to 2 K. The key difference between the two compounds lies in their crystal structure. The Os atoms in Pb2ZnOsO6 are arranged on an approximately face-centred cubic lattice with strong antiferromagnetic nearest-neighbor exchange couplings. The geometrical frustration inherent to this lattice prevents magnetic order from forming down to the lowest temperatures. In contrast, the unit cell of Pb2CaOsO6 is heavily distorted up to at least 500 K, including antiferroelectric-like displacements of the Pb and O atoms despite metallic conductivity above 80 K. This distortion relieves the magnetic frustration, facilitating magnetic order which in turn drives the metal--insulator transition. Our results suggest that the phase transition in Pb2CaOsO6 is spin-driven, and could be a rare example of a Slater transition.
Metal-insulator transitions involve a mix of charge, spin, and structural degrees of freedom, and when strongly-correlated, can underlay the emergence of exotic quantum states. Mott insulators induced by the opening of a Coulomb gap are an important and well-recognized class of transitions, but insulators purely driven by spin correlations are much less common, as the reduced energy scale often invites competition from other degrees of freedom. Here we demonstrate a clean example of a spin-correlation-driven metal-insulator transition in the all-in-all-out pyrochlore antiferromagnet Cd2Os2O7, where the lattice symmetry is fully preserved by the antiferromagnetism. After the antisymmetric linear magnetoresistance from conductive, ferromagnetic domain walls is carefully removed experimentally, the Hall coefficient of the bulk reveals four Fermi surfaces, two of electron type and two of hole type, sequentially departing the Fermi level with decreasing temperature below the Neel temperature, T_N. Contrary to the common belief of concurrent magnetic and metal-insulator transitions in Cd2Os2O7, the charge gap of a continuous metal-insulator transition opens only at T~10K, well below T_N=227K. The insulating mechanism resolved by the Hall coefficient parallels the Slater picture, but without a folded Brillouin zone, and contrasts sharply with the behavior of Mott insulators and spin density waves, where the electronic gap opens above and at T_N, respectively.
132 - D. Babich , J. Tranchant , C. Adda 2021
Since the beginnings of the electronic age, a quest for ever faster and smaller switches has been initiated, since this element is ubiquitous and foundational in any electronic circuit to regulate the flow of current. Mott insulators are promising ca ndidates to meet this need as they undergo extremely fast resistive switching under electric field. However the mechanism of this transition is still under debate. Our spatially-resolved {mu}-XRD imaging experiments carried out on the prototypal Mott insulator (V0.95Cr0.05)2O3 show that the resistive switching is associated with the creation of a conducting filamentary path consisting in an isostructural compressed phase without any chemical nor symmetry change. This clearly evidences that the resistive switching mechanism is inherited from the bandwidth-controlled Mott transition. This discovery might hence ease the development of a new branch of electronics dubbed Mottronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا