ﻻ يوجد ملخص باللغة العربية
We aimed to study the chemistry of the circumnuclear molecular gas of NGC1068, and to compare it with those of the starburst galaxies M82 and NGC253. Using the IRAM-30m telescope, we observed the inner 2 kpc of NGC1068 between 86.2 GHz and 115.6 GHz. We identified 35 spectral features, corresponding to 24 different molecular species. Among them, HC3N, SO, N2H+, CH3CN, NS, 13CN, and HN13C are detected for the first time in NGC1068. Assuming local thermodynamic equilibrium (LTE), we calculated the column densities of the detected molecules, as well as the upper limits to the column densities of some undetected species. The comparison among the chemistries of NGC1068, M82, and NGC253, suggests that, apart from X-rays, shocks also determine the chemistry of NGC1068. We propose the column density ratio between CH3CCH and HC3N as a prime indicator of the imprints of starburst and AGN environments in the circumnuclear interstellar medium. This ratio is, at least, 64 times larger in M82 than in NGC1068, and, at least, 4 times larger in NGC253 than in NGC1068. Finally, we used the UCL_CHEM and UCL_PDR chemical codes to constrain the origin of the species, as well as to test the influence of UV radiation fields and cosmic rays on the observed abundances.
We aimed to study the molecular composition of the interstellar medium (ISM) surrounding an Active Galactic Nucleus (AGN), by making an inventory of molecular species and their abundances, as well as to establish a chemical differentiation between st
This paper is part of a multi-species survey of line emission from the molecular gas in the circum-nuclear disk (CND) of the Seyfert 2 galaxy NGC1068. Single-dish observations have provided evidence that the abundance of silicon monoxide(SiO) in the
We present photoionization models of the high excitation gas in the Extended Narrow Line Region (ENLR) of NGC1068. The ENLR line fluxes have been calculated allowing for attenuation of the central-source ionizing continuum as a function of distance f
We present adaptive optics-assisted J- and K-band integral field spectroscopy of the inner 300 x 300 pc of the Seyfert 2 galaxy NGC1068. The data were obtained with the Gemini NIFS integral field unit spectrometer, which provided us with high-spatial
NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with iron-complex clusters known to exhibit significant metallicity and heavy element dispersions. In order t