ﻻ يوجد ملخص باللغة العربية
There are conflicting requirements on the value of the momentum compaction factor during energy ramping in a synchrotron: at low energies it should be positive and sufficiently large to make the slippage factor small so that it is possible to work closer to the RF voltage crest and ensure sufficient RF bucket area, whereas at higher energies it should be small or negative to avoid transition crossing. In the present report we propose a lattice with a variable momentum compaction factor and consider the possibility of using it in a high repetition rate proton driver for a muon collider and neutrino factory.
The present Fermilab proton Booster is an early example of a rapidly-cycling synchrotron (RCS). Built in the 1960s, it features a design in which the combined-function dipole magnets serve as vacuum chambers. Such a design is quite cost-effective, an
This paper presents an 8 GeV Rapid Cycling Synchrotron (RCS) option for Project X. It has several advantages over an 8 GeV SC linac. In particular, the cost could be lower. With a 2 GeV 10 mA pulsed linac as injector, the RCS would be able to deliver
The Fermilab accelerator complex delivers intense high-energy proton beams to a variety of fixed-target scientific programs, including a flagship long-baseline neutrino program. With the advent of the Deep Underground Neutrino Experiment (DUNE) and L
KEKB is a high luminosity e+e- collider for studying B mesons and has achieved the design luminosity of 1034cm-2s-1 in 2003. In order to get higher luminosity, we tested negative momentum compaction optics in the summer of 2003. We measured the bunch
The fast extraction kicker system is one of the most important accelerator components, whose inner structure will be the main source of the impedance in the RCS. It is necessary to understand the kicker impedance before its installation into the tunn