ﻻ يوجد ملخص باللغة العربية
We discuss the QCD phase diagram from two different point of view. We first investigate the phase diagram structure in the strong coupling lattice QCD with Polyakov loop effects, and show that the the chiral and Z_{N_c} deconfinement transition boundaries deviate at finite mu as suggested from large N_c arguments. Next we discuss the possibility to probe the QCD critical point during prompt black hole formation processes. The thermodynamical evolution during the black hole formation would result in quark matter formation, and the critical point in isospin asymmetric matter may be swept. (T,mu_B) region probed in heavy-ion collisions and the black hole formation processes covers most of the critical point locations predicted in recent lattice Monte-Carlo simulations and chiral effective models.
We discuss the possibility to probe the QCD critical point during the dynamical black hole formation from a gravitational collapse of a massive star, where the temperature and the baryon chemical potential become as high as T ~ 90 MeV and $mu_B$ ~ 13
We examine the Brown-Rho scaling for meson masses in the strong coupling limit of lattice QCD with one species of staggered fermion. Analytical expression of meson masses is derived at finite temperature and chemical potential. We find that meson mas
We study the phase diagram of quark matter and nuclear properties based on the strong coupling expansion of lattice QCD. Both of baryon and finite coupling correction are found to have effects to extend the hadron phase to a larger mu direction relat
The evolution of non-hydrodynamic slow processes near the QCD critical point is explored with the novel Hydro+ framework, which extends the conventional hydrodynamic description by coupling it to additional explicitly evolving slow modes describing l
Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a (1+1)-dimensional model setting