ﻻ يوجد ملخص باللغة العربية
The evolution of non-hydrodynamic slow processes near the QCD critical point is explored with the novel Hydro+ framework, which extends the conventional hydrodynamic description by coupling it to additional explicitly evolving slow modes describing long wavelength fluctuations. Their slow relaxation is controlled by critical behavior of the correlation length and is independent from gradients of matter density and pressure that control the evolution of the hydrodynamic quantities. In this exploratory study we follow the evolution of the slow modes on top of a simplified QCD matter background, allowing us to clearly distinguish, and study both separately and in combination, the main effects controlling the dynamics of critical slow modes. In particular, we show how the evolution of the slow modes depend on their wave number, the expansion of and advection by the fluid background, and the behavior of the correlation length. Non-equilibrium contributions from the slow modes to bulk matter properties that affect the bulk dynamics (entropy, pressure, temperature and chemical potential) are discussed and found to be small.
A quantitatively reliable theoretical description of the dynamics of fluctuations in non-equilibrium is indispensable in the experimental search for the QCD critical point by means of ultra-relativistic heavy-ion collisions. In this work we consider
The expression for the dynamical spectral structure of the density fluctuation near the QCD critical point has been derived using linear response theory within the purview of Israel-Stewart relativistic viscous hydrodynamics. The change in spectral s
The experimental search for the QCD critical point by means of relativistic heavy-ion collisions necessitates the development of dynamical models of fluctuations. In this work we study the fluctuations of the net-baryon density near the critical poin
We present a fully dynamical model to study the chiral and deconfinement transition of QCD simultaneously. The quark degrees of freedom constitute a heat bath in local equilibrium for both order parameters, the sigma field and a dynamical Polyakov lo
Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a (1+1)-dimensional model setting