ﻻ يوجد ملخص باللغة العربية
We review the exact treatment of the pairing correlation functions in the canonical ensemble. The key for the calculations has been provided by relating the discrete BCS model to known integrable theories corresponding to the so called Gaudin magnets with suitable boundary terms. In the present case the correlation functions can be accessed beyond the formal level, allowing the description of the cross-over from few electrons to the thermodynamic limit. In particular, we summarize the results on the finite size scaling behavior of the canonical pairing clarifying some puzzles emerged in the past. Some recent developments and applications are outlined.
We introduce the notions of $(G,q)$-opers and Miura $(G,q)$-opers, where $G$ is a simply-connected complex simple Lie group, and prove some general results about their structure. We then establish a one-to-one correspondence between the set of $(G,q)
We study fluctuations and finite size corrections for the ferromagnetic thermodynamic limit in the Bethe ansatz for the Heisenberg XXX1/2 spin chain, which is the AdS/CFT dual of semiclassical spinning strings. For this system we derive the standard
In this paper, we describe a certain kind of $q$-connections on a projective line, namely $Z$-twisted $(G,q)$-opers with regular singularities using the language of generalized minors. In part one arXiv:2002.07344 we explored the correspondence betwe
We study minority games in efficient regime. By incorporating the utility function and aggregating agents with similar strategies we develop an effective mesoscale notion of state of the game. Using this approach, the game can be represented as a Mar
We show that there exist a class of nonequilibrium systems for which a non-equilibrium analog of the Ginzburg-Landau (GL) functional can be constructed and propose the procedure for its derivation. As an example, we consider a small superconductor is