ترغب بنشر مسار تعليمي؟ اضغط هنا

Bethe Ansatz approach to the pairing fluctuations in the mesoscopic regime

200   0   0.0 ( 0 )
 نشر من قبل Andreas Osterloh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the exact treatment of the pairing correlation functions in the canonical ensemble. The key for the calculations has been provided by relating the discrete BCS model to known integrable theories corresponding to the so called Gaudin magnets with suitable boundary terms. In the present case the correlation functions can be accessed beyond the formal level, allowing the description of the cross-over from few electrons to the thermodynamic limit. In particular, we summarize the results on the finite size scaling behavior of the canonical pairing clarifying some puzzles emerged in the past. Some recent developments and applications are outlined.



قيم البحث

اقرأ أيضاً

We introduce the notions of $(G,q)$-opers and Miura $(G,q)$-opers, where $G$ is a simply-connected complex simple Lie group, and prove some general results about their structure. We then establish a one-to-one correspondence between the set of $(G,q) $-opers of a certain kind and the set of nondegenerate solutions of a system of Bethe Ansatz equations. This may be viewed as a $q$DE/IM correspondence between the spectra of a quantum integrable model (IM) and classical geometric objects ($q$-differential equations). If $mathfrak{g}$ is simply-laced, the Bethe Ansatz equations we obtain coincide with the equations that appear in the quantum integrable model of XXZ-type associated to the quantum affine algebra $U_q widehat{mathfrak{g}}$. However, if $mathfrak{g}$ is non-simply laced, then these equations correspond to a different integrable model, associated to $U_q {}^Lwidehat{mathfrak{g}}$ where $^Lwidehat{mathfrak{g}}$ is the Langlands dual (twisted) affine algebra. A key element in this $q$DE/IM correspondence is the $QQ$-system that has appeared previously in the study of the ODE/IM correspondence and the Grothendieck ring of the category ${mathcal O}$ of the relevant quantum affine algebra.
82 - N. Beisert , L. Freyhult 2005
We study fluctuations and finite size corrections for the ferromagnetic thermodynamic limit in the Bethe ansatz for the Heisenberg XXX1/2 spin chain, which is the AdS/CFT dual of semiclassical spinning strings. For this system we derive the standard quantum mechanical formula which expresses the energy shift as a sum over fluctuation energies. As an example we apply our results to the simplest, one-cut solution of this system and derive its spectrum of fluctuations.
In this paper, we describe a certain kind of $q$-connections on a projective line, namely $Z$-twisted $(G,q)$-opers with regular singularities using the language of generalized minors. In part one arXiv:2002.07344 we explored the correspondence betwe en these $q$-connections and $QQ$-systems/Bethe Ansatz equations. Here we associate to a $Z$-twisted $(G,q)$-oper a class of meromorphic sections of a $G$-bundle, satisfying certain difference equations, which we refer to as generalized $q$-Wronskians. Among other things, we show that the $QQ$-systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.
We study minority games in efficient regime. By incorporating the utility function and aggregating agents with similar strategies we develop an effective mesoscale notion of state of the game. Using this approach, the game can be represented as a Mar kov process with substantially reduced number of states with explicitly computable probabilities. For any payoff, the finiteness of the number of states is proved. Interesting features of an extensive random variable, called aggregated demand, viz. its strong inhomogeneity and presence of patterns in time, can be easily interpreted. Using Markov theory and quenched disorder approach, we can explain important macroscopic characteristics of the game: behavior of variance per capita and predictability of the aggregated demand. We prove that in case of linear payoff many attractors in the state space are possible.
We show that there exist a class of nonequilibrium systems for which a non-equilibrium analog of the Ginzburg-Landau (GL) functional can be constructed and propose the procedure for its derivation. As an example, we consider a small superconductor is land of the size less than the coherence length in a stationary nonequlibrium state. We find the GL expansion of the free energy functional of such a system and analyze the dependence of the coefficients of the expansion upon the external drive and the non-equilibrium distribution functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا