ﻻ يوجد ملخص باللغة العربية
The structure of the weakly-bound $^{26}_{;;9}$F$_{17}$ odd-odd nucleus, produced from $^{27,28}$Na nuclei, has been investigated at GANIL by means of the in-beam $gamma$-ray spectroscopy technique. A single $gamma$-line is observed at 657(7) keV in $^{26}_{9}$F which has been ascribed to the decay of the excited J=$2^+$ state to the J=1$^+$ ground state. The possible presence of intruder negative parity states in $^{26}$F is also discussed.
A long-lived $J^{pi}=4_1^+$ isomer, $T_{1/2}=2.2(1)$ms, has been discovered at 643.4(1) keV in the weakly-bound $^{26}_{9}$F nucleus. It was populated at GANIL in the fragmentation of a $^{36}$S beam. It decays by an internal transition to the $J^{pi
The ground state of $^{28}$F has been observed as an unbound resonance $2underline{2}0$ keV above the ground state of $^{27}$F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the $^{28}$F ground state is
$beta$ decay of $^{26}$P was used to populate the astrophysically important $E_x=$5929.4(8) keV $J^{pi}=3{^+}$ state of $^{26}$Si. Both $beta$-delayed proton at 418(8) keV and gamma ray at 1742(2) keV emitted from this state were measured simultaneou
The $beta$-decay properties of the neutron-deficient nuclei $^{25}$Si and $^{26}$P have been investigated at the GANIL/LISE3 facility by means of charged-particle and $gamma$-ray spectroscopy. The decay schemes obtained and the Gamow-Teller strength
Classical novae are expected to contribute to the 1809-keV Galactic $gamma$-ray emission by producing its precursor $^{26}$Al, but the yield depends on the thermonuclear rate of the unmeasured $^{25}$Al($p,gamma$)$^{26}$Si reaction. Using the $beta$