ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical-Nova Contribution to the Milky Ways $^{26}$Al Abundance: Exit Channel of the Key $^{25}$Al($p,gamma$)$^{26}$Si Resonance

339   0   0.0 ( 0 )
 نشر من قبل Christopher Wrede
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical novae are expected to contribute to the 1809-keV Galactic $gamma$-ray emission by producing its precursor $^{26}$Al, but the yield depends on the thermonuclear rate of the unmeasured $^{25}$Al($p,gamma$)$^{26}$Si reaction. Using the $beta$ decay of $^{26}$P to populate the key $J^{pi}=3^+$ resonance in this reaction, we report the first evidence for the observation of its exit channel via a $1741.6 pm 0.6 (textrm{stat}) pm 0.3 (textrm{syst})$ keV primary $gamma$ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured $gamma$-ray energy and intensity with other experimental data on $^{26}$Si, we find the center-of-mass energy and strength of the resonance to be $E_r = 414.9 pm 0.6(textrm{stat}) pm 0.3 (textrm{syst}) pm 0.6(textrm{lit.})$ keV and $omegagamma = 23 pm 6 (textrm{stat})^{+11}_{-10}(textrm{lit.})$ meV, respectively, where the last uncertainties are from adopted literature data. We use hydrodynamic nova simulations to model $^{26}$Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic $^{26}$Al.



قيم البحث

اقرأ أيضاً

The rate of the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction is one of the few key remaining nuclear uncertainties required for predicting the production of the cosmic $gamma$-ray emitter $^{26}$Al in explosive burning in novae. This reaction rate is dom inated by three key resonances ($J^{pi}=0^{+}$, $1^{+}$ and $3^{+}$) in $^{26}$Si. Only the $3^{+}$ resonance strength has been directly constrained by experiment. A high resolution measurement of the $^{25}$Mg($d$,$p$) reaction was used to determine spectroscopic factors for analog states in the mirror nucleus, $^{26}$Mg. A first spectroscopic factor value is reported for the $0^{+}$ state at 6.256 MeV, and a strict upper limit is set on the value for the $1^{+}$ state at 5.691 MeV, that is incompatible with an earlier ($^{4}$He,$^{3}$He) study. These results are used to estimate proton partial widths, and resonance strengths of analog states in $^{26}$Si contributing to the $^{25}$Al($p$,$gamma$)$^{26}$Si reaction rate in nova burning conditions.
108 - P. F. Liang , L. J. Sun , J. Lee 2019
$beta$ decay of $^{26}$P was used to populate the astrophysically important $E_x=$5929.4(8) keV $J^{pi}=3{^+}$ state of $^{26}$Si. Both $beta$-delayed proton at 418(8) keV and gamma ray at 1742(2) keV emitted from this state were measured simultaneou sly for the first time with corresponding absolute intensities of 11.1(12)% and 0.59(44)%, respectively. Besides, shell model calculations with weakly bound effects were performed to investigate the decay properties of other resonant states and a spin-parity of $4^+$ rather than $0^+$ was favored for the $E_x=$5945.9(40) keV state. Combining the experimental results and theoretical calculations, $^{25}$Al($p,gamma$)$^{26}$Si reaction rate in explosive hydrogen burning environments was calculated and compared with previous studies.
The $beta$-decay properties of the neutron-deficient nuclei $^{25}$Si and $^{26}$P have been investigated at the GANIL/LISE3 facility by means of charged-particle and $gamma$-ray spectroscopy. The decay schemes obtained and the Gamow-Teller strength distributions are compared to shell-model calculations based on the USD interaction. B(GT) values derived from the absolute measurement of the $beta$-decay branching ratios give rise to a quenching factor of the Gamow-Teller strength of 0.6. A precise half-life of 43.7 (6) ms was determined for $^{26}$P, the $beta$- (2)p decay mode of which is described.
Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the $^{25}$Mg(p,$gamma$)$^{26}$Al reaction affect the production of radioactive $^{26}$Al$^{ gs}$ as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at LUNA, we provide revised rates of the $^{25}$Mg(p,$gamma$)$^{26}$Al$^{gs}$ and the $^{25}$Mg(p,$gamma$)$^{26}$Al$^{m}$ reactions with corresponding uncertainties. In the temperature range 50 to 150 MK, the new recommended rate of the $^{26}$Al$^{m}$ production is up to 5 times higher than previously assumed. In addition, at T$=100$ MK, the revised total reaction rate is a factor of 2 higher. Note that this is the range of temperature at which the Mg-Al cycle operates in an H-burning zone. The effects of this revision are discussed. Due to the significantly larger $^{25}$Mg(p,$gamma$)$^{26}$Al$^{m}$ rate, the estimated production of $^{26}$Al$^{gs}$ in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic $^{26}$Al budget. Similarly, we show that the AGB extra-mixing scenario does not appear able to explain the most extreme values of $^{26}$Al/$^{27}$Al, i.e. $>10^{-2}$, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of a self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster stars.
Context. The diffuse gamma-ray emission of $^{26}{rm Al}$ at 1.8 MeV reflects ongoing nucleosynthesis in the Milky Way, and traces massive-star feedback in the interstellar medium due to its 1 Myr radioactive lifetime. Interstellar-medium morphology and dynamics are investigated in astrophysics through 3D hydrodynamic simulations in fine detail, as only few suitable astronomical probes are available. Aims. We compare a galactic-scale hydrodynamic simulation of the Galaxys interstellar medium, including feedback and nucleosynthesis, with gamma-ray data on $^{26}{rm Al}$ emission in the Milky Way extracting constraints that are only weakly dependent on the particular realisation of the simulation or Galaxy structure. Methods. Due to constraints and biases in both the simulations and the gamma-ray observations, such comparisons are not straightforward. For a direct comparison, we perform maximum likelihood fits of simulated sky maps as well as observation-based maximum entropy maps to measurements with INTEGRAL/SPI. To study general morphological properties, we compare the scale heights of $^{26}{rm Al}$ emission produced by the simulation to INTEGRAL/SPI measurements.} Results. The direct comparison shows that the simulation describes the observed inner Galaxy well, but differs significantly from the observed full-sky emission morphology. Comparing the scale height distribution, we see similarities for small scale height features and a mismatch at larger scale heights. We attribute this to the prominent foreground emission sites that are not captured by the simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا