ﻻ يوجد ملخص باللغة العربية
In the system of a gravitating Q-ball, there is a maximum charge $Q_{{rm max}}$ inevitably, while in flat spacetime there is no upper bound on $Q$ in typical models such as the Affleck-Dine model. Theoretically the charge $Q$ is a free parameter, and phenomenologically it could increase by charge accumulation. We address a question of what happens to Q-balls if $Q$ is close to $Q_{{rm max}}$. First, without specifying a model, we show analytically that inflation cannot take place in the core of a Q-ball, contrary to the claim of previous work. Next, for the Affleck-Dine model, we analyze perturbation of equilibrium solutions with $Qapprox Q_{{rm max}}$ by numerical analysis of dynamical field equations. We find that the extremal solution with $Q=Q_{{rm max}}$ and unstable solutions around it are critical solutions, which means the threshold of black-hole formation.
We consider the lagrangian of a self-interacting complex scalar field admitting generically Q-balls solutions. This model is extended by minimal coupling to electromagnetism and to gravity. A stationnary, axially-symmetric ansatz for the different fi
The universal character of the gravitational interaction provided by the equivalence principle motivates a geometrical description of gravity. The standard formulation of General Relativity `a la Einstein attributes gravity to the spacetime curvature
We construct electrically charged Q-balls and boson stars in a model with a scalar self-interaction potential resulting from gauge mediated supersymmetry breaking. We discuss the properties of these solutions in detail and emphasize the differences t
Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this framework to include a Proca mass for the gauge boson, which can arise either from spontan
We study non-topological solitons, so called Q-balls, which carry a non-vanishing Noether charge and arise as lump solutions of self-interacting complex scalar field models. Explicit examples of new axially symmetric non-spinning Q-ball solutions tha