ﻻ يوجد ملخص باللغة العربية
The electronic and magnetic properties of a neutral substitutional nickel (Ni$_s^0$) impurity in diamond are studied using density functional theory in the generalized gradient approximation. The spin-one ground state consists of two electrons with parallel spins, one located on the nickel ion in the $3d^9$ configuration and the other distributed among the nearest-neighbor carbons. The exchange interaction between these spins is due to $p-d$ hybridization and is controllable with compressive hydrostatic or uniaxial strain, and for sufficient strain the antiparallel spin configuration becomes the ground state. Hence, the Ni impurity forms a controllable two-electron exchange-coupled system that should be a robust qubit for solid-state quantum information processing.
We have quantified substitutional impurity concentrations in synthetic diamond crystals down to sub parts-per-billion levels. The capture lifetimes of electrons and excitons injected by photoexcitation were compared for several samples with different
Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are cons
We report the first observation of substitutional silicon atoms in single-layer hexagonal boron nitride (h-BN) using aberration corrected scanning transmission electron microscopy (STEM). The medium angle annular dark field (MAADF) images reveal sili
It is suggested that the substitutional nitrogen in diamonds bonded to three of the surrounding carbon atoms instead of four. This proposed electron configuration of the defect is deduced from previous experiments and theoretical considerations. Nota
Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information process