ﻻ يوجد ملخص باللغة العربية
It is suggested that the substitutional nitrogen in diamonds bonded to three of the surrounding carbon atoms instead of four. This proposed electron configuration of the defect is deduced from previous experiments and theoretical considerations. Notably, the 1344 cm-1 band, characteristics of the substitutional Nitrogen, is independent of the isotopic change of Nitrogen but depend on the isotopic change of Carbon. The well established NV centre should not be stable if Nitrogen is bounded to four of the surrounding Carbon. Additional support comes from the substantially bigger size of the single substitutional nitrogen atom indicating loan pair electron. The proposed configuration of the substitutional Nitrogen was also tested by using a simple force constant model. Replacing force constant of C-N with 2/3 C-C:1/3 C=C reproduces the 1344 cm-1 band.
Photochromism in single nitrogen-vacancy optical centers in diamond is demonstrated. Time-resolved optical spectroscopy shows that intense irradiation at 514 nm switches the nitrogen-vacancy defects to the negative form. This defect state relaxes bac
Fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy (NV$^-$) centers are promising for a wide range of applications, such as for sensing, as fluorescence biomarkers, or to hyperpolarize nuclear spins. NV$^-$ centers are formed fro
We have quantified substitutional impurity concentrations in synthetic diamond crystals down to sub parts-per-billion levels. The capture lifetimes of electrons and excitons injected by photoexcitation were compared for several samples with different
The nitrogen-vacancy (NV) colour centre in diamond is an important physical system for emergent quantum technologies, including quantum metrology, information processing and communications, as well as for various nanotechnologies, such as biological
Symmetry considerations are used in presenting a model of the electronic structure and the associated dynamics of the nitrogen-vacancy center in diamond. The model accounts for the occurrence of optically induced spin polarization, for the change of