ترغب بنشر مسار تعليمي؟ اضغط هنا

Starship Sails Propelled by Cost-Optimized Directed Energy

95   0   0.0 ( 0 )
 نشر من قبل Gregory Benford
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James Benford




اسأل ChatGPT حول البحث

Microwave propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (beam-riding), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, graphene, beryllium, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at todays costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic.



قيم البحث

اقرأ أيضاً

The primary challenge of rocket propulsion is the burden of needing to accelerate the spacecrafts own fuel, resulting in only a logarithmic gain in maximum speed as propellant is added to the spacecraft. Light sails offer an attractive alternative in which fuel is not carried by the spacecraft, with acceleration being provided by an external source of light. By artificially illuminating the spacecraft with beamed radiation, speeds are only limited by the area of the sail, heat resistance of its material, and power use of the accelerating apparatus. In this paper, we show that leakage from a light sail propulsion apparatus in operation around a solar system analogue would be detectable. To demonstrate this, we model the launch and arrival of a microwave beam-driven light sail constructed for transit between planets in orbit around a single star, and find an optimal beam frequency on the order of tens of GHz. Leakage from these beams yields transients with flux densities of Jy and durations of tens of seconds at 100 pc. Because most travel within a planetary system would be conducted between the habitable worlds within that system, multiply-transiting exoplanetary systems offer the greatest chance of detection, especially when the planets are in projected conjunction as viewed from Earth. If interplanetary travel via beam-driven light sails is commonly employed in our galaxy, this activity could be revealed by radio follow-up of nearby transiting exoplanetary systems. The expected signal properties define a new strategy in the search for extraterrestrial intelligence (SETI).
74 - Rene Heller 2020
The solar photon pressure provides a viable source of thrust for spacecraft in the solar system. Theoretically it could also enable interstellar missions, but an extremely small mass per cross section area is required to overcome the solar gravity. W e identify aerographite, a synthetic carbon-based foam with a density of 0.18 kg/m^3 (15,000 times more lightweight than aluminum) as a versatile material for highly efficient propulsion with sunlight. A hollow aerographite sphere with a shell thickness eps_shl = 1 mm could go interstellar upon submission to the solar radiation in interplanetary space. Upon launch at 1 AU from the Sun, an aerographite shell with eps_shl = 0.5 mm arrives at the orbit of Mars in 60 d and at Plutos orbit in 4.3 yr. Release of an aerographite hollow sphere, whose shell is 1 micrometer thick, at 0.04 AU (the closest approach of the Parker Solar Probe) results in an escape speed of nearly 6900 km/s and 185 yr of travel to the distance of our nearest star, Proxima Centauri. The infrared signature of a meter-sized aerographite sail could be observed with JWST up to 2 AU from the Sun, beyond the orbit of Mars. An aerographite hollow sphere with eps_shl = 100 micrometer and a radius of 1 m (5 m) weighs 230 mg (5.7 g) and has a 2.2 g (55 g) mass margin for interstellar escape. The payload margin is ten times the mass of the spacecraft, whereas the payload on chemical interstellar rockets is typically a thousandth of the weight of the rocket. Simplistic communication would enable studies of the interplanetary medium and a search for the suspected Planet Nine, and would serve as a precursor mission to alpha Centauri. We estimate prototype developments costs of 1 million USD, a price of 1000 USD per sail, and a total of <10 million USD including launch for a piggyback concept with an interplanetary mission.
This paper considers galactic scale Beacons from the point of view of expense to a builder on Earth. For fixed power density in the far field, what is the cost-optimum interstellar Beacon system? Experience shows an optimum tradeoff, depending on tra nsmission frequency and on antenna size and power. This emerges by minimizing the cost of producing a desired effective isotropic radiated power, which in turn determines the maximum range of detectability of a transmitted signal. We derive general relations for cost-optimal aperture and power. For linear dependence of capital cost on transmitter power and antenna area, minimum capital cost occurs when the cost is equally divided between antenna gain and radiated power. For non-linear power law dependence a similar simple division occurs. This is validated in cost data for many systems; industry uses this cost optimum as a rule-of-thumb. Costs of pulsed cost-efficient transmitters are estimated from these relations using current cost parameters ($/W, $/m2) as a basis. Galactic-scale Beacons demand effective isotropic radiated power >1017 W, emitted powers are >1 GW, with antenna areas > km2. We show the scaling and give examples of such Beacons. Thrifty beacon systems would be large and costly, have narrow searchlight beams and short dwell times when the Beacon would be seen by an alien oberver at target areas in the sky. They may revisit an area infrequently and will likely transmit at higher microwave frequencies, ~10 GHz. The natural corridor to broadcast is along the galactic spiral radius or along the spiral galactic arm we are in. Our second paper argues that nearly all SETI searches to date had little chance of seeing such Beacons.
What would SETI Beacon transmitters be like if built by civilizations with a variety of motivations, but who cared about cost? We studied in a companion paper how, for fixed power density in the far field, we could build a cost-optimum interstellar B eacon system. Here we consider, if someone like us were to produce a Beacon, how should we look for it? High-power transmitters might be built for wide variety of motives other than twoway communication; Beacons built to be seen over thousands of light years are such. Altruistic Beacon builders will have to contend with other altruistic causes, just as humans do, so may select for economy of effort. Cost, spectral lines near 1 GHz and interstellar scintillation favor radiating frequencies substantially above the classic water hole. Therefore the transmission strategy for a distant, cost-conscious Beacon will be a rapid scan of the galactic plane, to cover the angular space. Such pulses will be infrequent events for the receiver. Such Beacons built by distant advanced, wealthy societies will have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arrive in intermittent bursts. Several new SETI search strategies emerge from these ideas. We propose a new test for SETI Beacons, based on the Life Plane hypotheses.
212 - Han Zhu , Junqi Jin , Chang Tan 2017
Taobao, as the largest online retail platform in the world, provides billions of online display advertising impressions for millions of advertisers every day. For commercial purposes, the advertisers bid for specific spots and target crowds to compet e for business traffic. The platform chooses the most suitable ads to display in tens of milliseconds. Common pricing methods include cost per mille (CPM) and cost per click (CPC). Traditional advertising systems target certain traits of users and ad placements with fixed bids, essentially regarded as coarse-grained matching of bid and traffic quality. However, the fixed bids set by the advertisers competing for different quality requests cannot fully optimize the advertisers key requirements. Moreover, the platform has to be responsible for the business revenue and user experience. Thus, we proposed a bid optimizing strategy called optimized cost per click (OCPC) which automatically adjusts the bid to achieve finer matching of bid and traffic quality of page view (PV) request granularity. Our approach optimizes advertisers demands, platform business revenue and user experience and as a whole improves traffic allocation efficiency. We have validated our approach in Taobao display advertising system in production. The online A/B test shows our algorithm yields substantially better results than previous fixed bid manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا