ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimized Cost per Click in Taobao Display Advertising

213   0   0.0 ( 0 )
 نشر من قبل Han Zhu
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Taobao, as the largest online retail platform in the world, provides billions of online display advertising impressions for millions of advertisers every day. For commercial purposes, the advertisers bid for specific spots and target crowds to compete for business traffic. The platform chooses the most suitable ads to display in tens of milliseconds. Common pricing methods include cost per mille (CPM) and cost per click (CPC). Traditional advertising systems target certain traits of users and ad placements with fixed bids, essentially regarded as coarse-grained matching of bid and traffic quality. However, the fixed bids set by the advertisers competing for different quality requests cannot fully optimize the advertisers key requirements. Moreover, the platform has to be responsible for the business revenue and user experience. Thus, we proposed a bid optimizing strategy called optimized cost per click (OCPC) which automatically adjusts the bid to achieve finer matching of bid and traffic quality of page view (PV) request granularity. Our approach optimizes advertisers demands, platform business revenue and user experience and as a whole improves traffic allocation efficiency. We have validated our approach in Taobao display advertising system in production. The online A/B test shows our algorithm yields substantially better results than previous fixed bid manner.



قيم البحث

اقرأ أيضاً

64 - Aditya Jain , Sahil Khan 2021
Cost per click is a common metric to judge digital advertising campaign performance. In this paper we discuss an approach that generates a feature targeting recommendation to optimise cost per click. We also discuss a technique to assign bid prices t o features without compromising on the number of features recommended. Our approach utilises impression and click stream data sets corresponding to real time auctions that we have won. The data contains information about device type, website, RTB Exchange ID. We leverage data across all campaigns that we have access to while ensuring that recommendations are sensitive to both individual campaign level features and globally well performing features as well. We model Bid recommendation around the hypothesis that a click is a Bernoulli trial and click stream follows Binomial distribution which is then updated based on live performance ensuring week over week improvement. This approach has been live tested over 10 weeks across 5 campaigns. We see Cost per click gains of 16-60% and click through rate improvement of 42-137%. At the same time, the campaign delivery was competitive.
140 - Benjamin Heymann 2018
A standard result from auction theory is that bidding truthfully in a second price auction is a weakly dominant strategy. The result, however, does not apply in the presence of Cost Per Action (CPA) constraints. Such constraints exist, for instance, in digital advertising, as some buyer may try to maximize the total number of clicks while keeping the empirical Cost Per Click (CPC) below a threshold. More generally the CPA constraint implies that the buyer has a maximal average cost per unit of value in mind. We discuss how such constraints change some traditional results from auction theory. Following the usual textbook narrative on auction theory, we focus specifically on the symmetric setting, We formalize the notion of CPA constrained auctions and derive a Nash equilibrium for second price auctions. We then extend this result to combinations of first and second price auctions. Further, we expose a revenue equivalence property and show that the sellers revenue-maximizing reserve price is zero. In practice, CPA-constrained buyers may target an empirical CPA on a given time horizon, as the auction is repeated many times. Thus his bidding behavior depends on past realization. We show that the resulting buyer dynamic optimization problem can be formalized with stochastic control tools and solved numerically with available solvers.
125 - Kan Ren , Weinan Zhang , Ke Chang 2018
Real-time bidding (RTB) based display advertising has become one of the key technological advances in computational advertising. RTB enables advertisers to buy individual ad impressions via an auction in real-time and facilitates the evaluation and t he bidding of individual impressions across multiple advertisers. In RTB, the advertisers face three main challenges when optimizing their bidding strategies, namely (i) estimating the utility (e.g.,
In E-commerce advertising, where product recommendations and product ads are presented to users simultaneously, the traditional setting is to display ads at fixed positions. However, under such a setting, the advertising system loses the flexibility to control the number and positions of ads, resulting in sub-optimal platform revenue and user experience. Consequently, major e-commerce platforms (e.g., Taobao.com) have begun to consider more flexible ways to display ads. In this paper, we investigate the problem of advertising with adaptive exposure: can we dynamically determine the number and positions of ads for each user visit under certain business constraints so that the platform revenue can be increased? More specifically, we consider two types of constraints: request-level constraint ensures user experience for each user visit, and platform-level constraint controls the overall platform monetization rate. We model this problem as a Constrained Markov Decision Process with per-state constraint (psCMDP) and propose a constrained two-level reinforcement learning approach to decompose the original problem into two relatively independent sub-problems. To accelerate policy learning, we also devise a constrained hindsight experience replay mechanism. Experimental evaluations on industry-scale real-world datasets demonstrate the merits of our approach in both obtaining higher revenue under the constraints and the effectiveness of the constrained hindsight experience replay mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا