ترغب بنشر مسار تعليمي؟ اضغط هنا

High accuracy measure of atomic polarizability in an optical lattice clock

498   0   0.0 ( 0 )
 نشر من قبل Jeff Sherman
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clocks sensitivity to electric fields (such as blackbody radiation) as the differential static polarizability of the ground and excited clock levels: 36.2612(7) kHz (kV/cm)^{-2}. The clocks fractional uncertainty due to room temperature blackbody radiation is reduced an order of magnitude to 3 times 10^{-17}.



قيم البحث

اقرأ أيضاً

188 - Xavier Baillard 2007
We report the first accuracy evaluation of an optical lattice clock based on the 1S0 - 3P0 transition of an alkaline earth boson, namely 88Sr atoms. This transition has been enabled using a static coupling magnetic field. The clock frequency is deter mined to be 429 228 066 418 009(32) Hz. The isotopic shift between 87Sr and 88Sr is 62 188 135 Hz with fractional uncertainty 5.10^{-7}. We discuss the conditions necessary to reach a clock accuracy of 10^{-17} or less using this scheme.
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the lon g natural lifetime and from the 4f136s2 configuration of the upper state. The electric quadrupole moment of the 2F7/2 state is measured as -0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe light induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.
We realize a two-stage, hexagonal pyramid magneto-optical trap (MOT) with strontium, and demonstrate loading of cold atoms into cavity-enhanced 1D and 2D optical lattice traps, all within a single compact assembly of in-vacuum optics. We show that th e device is suitable for high-performance quantum technologies, focusing especially on its intended application as a strontium optical lattice clock. We prepare $2times 10^4$ spin-polarized atoms of $^{87}$Sr in the optical lattice within 500 ms; we observe a vacuum-limited lifetime of atoms in the lattice of 27 s; and we measure a background DC electric field of 12 Vm$^{-1}$ from stray charges, corresponding to a fractional frequency shift of $(-1.2times 0.8)times 10^{-18}$ to the strontium clock transition. When used in combination with careful management of the blackbody radiation environment, the device shows potential as a platform for realizing a compact, robust, transportable optical lattice clock with systematic uncertainty at the $10^{-18}$ level.
Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system based on an array of individually trapped neutral atoms with single-atom readout, merging many of the benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum simulation and computing with neutral atoms. We evaluate single-site resolved frequency shifts and short-term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates finite temperature, projective read-out, laser noise, and feedback dynamics. Our approach, based on a tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively simple experimental setup suited for transportable operation. These results establish the foundations for a third optical clock platform and provide a novel starting point for entanglement-enhanced metrology, quantum clock networks, and applications in quantum computing and communication with individual neutral atoms that require optical clock state control.
We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent exper imental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا