ﻻ يوجد ملخص باللغة العربية
Generation and diffusion of the magnetic field on the Sun is a key mechanism responsible for solar activity on all spatial and temporal scales - from the solar cycle down to the evolution of small-scale magnetic elements in the quiet Sun. The solar dynamo operates as a non-linear dynamical process and is thought to be manifest in two types: as a global dynamo responsible for the solar cycle periodicity, and as a small-scale turbulent dynamo responsible for the formation of magnetic carpet in the quiet Sun. Numerous MHD simulations of the solar turbulence did not yet reach a consensus as to the existence of a turbulent dynamo on the Sun. At the same time, high-resolution observations of the quiet Sun from Hinode instruments suggest possibilities for the turbulent dynamo. Analysis of characteristics of turbulence derived from observations would be beneficial in tackling the problem. We analyse magnetic and velocity energy spectra as derived from Hinode/SOT, SOHO/MDI, SDO/HMI and the New Solar Telescope (NST) of Big Bear Solar Observatory (BBSO) to explore the possibilities for the small-scale turbulent dynamo in the quiet Sun.
The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed inside nano-carriers. In addition to its usual long-range na
We study the effect of confinement on glassy liquids using Random First Order Transition theory as framework. We show that the characteristic length-scale above which confinement effects become negligible is related to the point-to-set length-scale i
Solar analogs, broadly defined as stars similar to the Sun in mass or spectral type, provide a useful laboratory for exploring the range of Sun-like behaviors and exploring the physical mechanisms underlying some of the Suns most elusive processes li
By 2050, we expect that CME models will accurately describe, and ideally predict, observed solar eruptions and the propagation of the CMEs through the corona. We describe some of the present known unknowns in observations and models that would need t