ﻻ يوجد ملخص باللغة العربية
By 2050, we expect that CME models will accurately describe, and ideally predict, observed solar eruptions and the propagation of the CMEs through the corona. We describe some of the present known unknowns in observations and models that would need to be addressed in order to reach this goal. We also describe how we might prepare for some of the unknown unknowns that will surely become challenges.
We determine the coronal magnetic field strength in the heliocentric distance range 6 to 23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection (CME) im
We use high time cadence images acquired by the STEREO EUVI and COR instruments to study the evolution of coronal mass ejections (CMEs), from their initiation, through the impulsive acceleration to the propagation phase. For a set of 95 CMEs we deriv
With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with
Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic e
Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming