ﻻ يوجد ملخص باللغة العربية
We discuss the possibility of non-minimal gauge invariance of transverse-momentum-dependent parton densities (TMDs) that allows direct access to the spin degrees of freedom of fermion fields entering the operator definition of (quark) TMDs. This is achieved via enhanced Wilson lines that are supplied with the spin-dependent Pauli term $sim F^{mu u}[gamma_mu, gamma_ u]$, thus providing an appropriate tool for the microscopic investigation of the spin and color structure of TMDs. We show that this generalization leaves the leading-twist TMD properties unchanged but modifies those of twist three by contributing to their anomalous dimensions. We also comment on Collins recent criticism of our approach.
I review some open questions relating to the large transverse momentum divergences in transverse moments of transverse momentum dependent (TMD) parton correlation func- tions. I also explain, in an abbreviated and summarized form, recent work that sh
QCD factorization approach in the field-theoretic description of the semi-inclusive hadronic processes in the large Bjorken $x$ approximation implies extraction of the three-dimensional parton distribution functions as a convolution of a collinear je
Collinear and transverse momentum dependent (TMD) parton densities are obtained from fits to precision measurements of deep inelastic scattering (DIS) cross sections at HERA. The parton densities are evolved by DGLAP evolution with next-to-leading-or
The calculations of $Z + b{bar b}$ tagged jet production performed in the four- and five-flavour schemes allow for detailed comparison of the heavy flavour structure of collinear and transverse momentum dependent (TMD) parton distributions as well as
We present the first determination of transverse momentum dependent (TMD) photon densities with the Parton Branching method. The photon distribution is generated perturbatively without intrinsic photon component. The input parameters for quarks and g