ﻻ يوجد ملخص باللغة العربية
The present paper deals with the spectral and the oscillation properties of a linear pencil $A-lambda B$. Here $A$ and $B$ are linear operators generated by the differential expressions $(py)$ and $-y+ cry$, respectively. In particular, it is shown that the negative eigenvalues of this problem are simple and the corresponding eigenfunctions $y_{-n}$ have $n-1$ zeros in $(0,1)$.
Self-adjoint boundary problems for the equation $y^{(4)}-lambdarho y=0$ with generalized derivative $rhoin W_2^{-1}[0,1]$ of self-similar Cantor type function as a weight are considered. Using the oscillating properties of the eigenfunctions, the spe
In this expository article some spectral properties of self-adjoint differential operators are investigated. The main objective is to illustrate and (partly) review how one can construct domains or potentials such that the essential or discrete spect
This paper considers Lieb-Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality tr((-Delta)^2 - C^{HR}_{d,2} / (|x|^4) - V(x))^{-gamma} < C_g
We consider the operator $H={d^4dt^4}+{ddt}p{ddt}+q$ with 1-periodic coefficients on the real line. The spectrum of $H$ is absolutely continuous and consists of intervals separated by gaps. We describe the spectrum of this operator in terms of the Ly
Picone-type identities are established for half-linear ODEs of fourth order (one-dimensional p-biLaplacian). It is shown that in the linear case they reduce to the known identities for fourth order linear ODEs. Picone-type identity known for two half