ﻻ يوجد ملخص باللغة العربية
We present a model to self-consistently describe the joint evolution of starburst galaxies and the galactic wind resulting from this evolution. We combine the population synthesis code Starburst99 with a semi-analytical model of galactic outflows and a model for the distribution and abundances of chemical elements inside the outflows. Starting with a galaxy mass, formation redshift, and adopting a particular form for the star formation rate, we describe the evolution of the stellar populations in the galaxy, the evolution of the metallicity and chemical composition of the interstellar medium (ISM), the propagation of the galactic wind, and the metal-enrichment of the intergalactic medium (IGM). In this paper, we study the properties of the model, by varying the mass of the galaxy, the star formation rate, and the efficiency of star formation. Our main results are the following: (1) For a given star formation efficiency f*, a more extended period of active star formation tends to produce a galactic wind that reaches a larger extent. If f* is sufficiently large, the energy deposited by the stars completely expels the ISM. Eventually, the ISM is being replenished by mass loss from supernovae and stellar winds. (2) For galaxies with masses above 10^11 Msun, the material ejected in the IGM always falls back onto the galaxy. Hence lower-mass galaxies are the ones responsible for enriching the IGM. (3) Stellar winds play a minor role in the dynamical evolution of the galactic wind, because their energy input is small compared to supernovae. However, they contribute significantly to the chemical composition of the galactic wind. We conclude that the history of the ISM enrichment plays a determinant role in the chemical composition and extent of the galactic wind, and therefore its ability to enrich the IGM.
We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first
The gases of the interstellar medium (ISM) possess orders of magnitude more mass than those of all the stars combined and are thus the prime component of the baryonic universe. With L-band surface sensitivity even better than the planned phase one Sq
We present predictions for galactic halo baryon fractions from cosmological hydrodynamic simulations with a well-constrained model for galactic outflows. Without outflows, halos contain roughly the cosmic fraction of baryons, slightly lowered at high
The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White & Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via
We present a detailed spectroscopic study of the hot gas toward the Galactic bulge along the 4U 1820-303 sight line by a combination analysis of emission and absorption spectra. In addition to the absorption lines of OVII Kalpha, OVII Kbeta, OVIII Ka