ترغب بنشر مسار تعليمي؟ اضغط هنا

An X-ray Spectroscopic Study of the Hot Interstellar Medium Toward the Galactic Bulge

143   0   0.0 ( 0 )
 نشر من قبل Noriko Yamasaki
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed spectroscopic study of the hot gas toward the Galactic bulge along the 4U 1820-303 sight line by a combination analysis of emission and absorption spectra. In addition to the absorption lines of OVII Kalpha, OVII Kbeta, OVIII Kalpha and NeIX Kalpha by Chandra LTGS as shown by previous works, Suzaku detected clearly the emission lines of OVII, OVIII, NeIX and NeX from the vicinity. We used simplified plasma models with constant temperature and density. Evaluation of the background and foreground emission was performed carefully, including stellar X-ray contribution based on the recent X-ray observational results and stellar distribution simulator. If we assume that one plasma component exists in front of 4U1820-303 and the other one at the back, the obtained temperatures are T= 1.7 +/- 0.2 MK for the front-side plasma and T=3.9(+0.4-0.3) MK for the backside. This scheme is consistent with a hot and thick ISM disk as suggested by the extragalactic source observations and an X-ray bulge around the Galactic center.



قيم البحث

اقرأ أيضاً

87 - Jiang-Tao Li 2020
The hot circum-galactic medium (CGM) represents the hot gas distributed beyond the stellar content of the galaxies while typically within their dark matter halos. It serves as a depository of energy and metal-enriched materials from galactic feedback and a reservoir from which the galaxy acquires fuels to form stars. It thus plays a critical role in the coevolution of galaxies and their environments. X-rays are one of the best ways to trace the hot CGM. I will briefly review what we have learned about the hot CGM based on X-ray observations over the past two decades, and what we still do not know. I will also briefly prospect what may be the foreseeable breakthrough in the next one or two decades with future X-ray missions.
We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multi-wavelength propert ies. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 $pm$ 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an AGN or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In 4 cases we identify the sources as binary stars.
138 - H. Sano , T. Fukuda , S. Yoshiike 2014
We have carried out a spectral analysis of the Suzaku X-ray data in the 0.4-12 keV range toward the shell-type very-high-energy {gamma}-ray supernova remnant RX J1713.7-3946. The aims of this analysis are to estimate detailed X-rays spectral properti es at a high angular resolution up to 2 arcmin, and to compare them with the interstellar gas. The X-ray spectrum is non-thermal and used to calculate absorbing column density, photon index, and absorption-corrected X-ray flux. The photon index varies significantly from 2.1 to 2.9. It is shown that the X-ray intensity is well correlated with the photon index, especially in the west region, with a correlation coefficient of 0.81. The X-ray intensity tends to increase with the averaged interstellar gas density while the dispersion is relatively large. The hardest spectra having the photon index less than 2.4 are found outside of the central 10 arcmin of the SNR, from the north to the southeast (~430 arcmin^2) and from the southwest to the northwest (~150 arcmin^2). The former region shows low interstellar gas density, while the latter high interstellar gas density. We present discussion for possible scenarios which explain the distribution of the photon index and its relationship with the interstellar gas.
We study the emission from the hot interstellar medium in a sample of nearby late type galaxies defined in Paper I. Our sample covers a broad range of star formation rates, from ~0.1 Msun/yr to ~17 Msun/yr and stellar masses, from ~3x10^8 Msun to ~6x 10^10 Msun. We take special care of systematic effects and contamination from bright and faint compact sources. We find that in all galaxies at least one optically thin thermal emission component is present in the unresolved emission, with the average temperature of <kT>= 0.24 keV. In about ~1/3 of galaxies, a second, higher temperature component is required, with the <kT>= 0.71 keV. Although statistically significant variations in temperature between galaxies are present, we did not find any meaningful trends with the stellar mass or star formation rate of the host galaxy. The apparent luminosity of the diffuse emission in the 0.5-2 keV band linearly correlates with the star formation rate with the scale factor of Lx/SFRapprox 8.3x10^38 erg/s per Msun/yr, of which in average ~30-40% is likely produced by faint compact sources of various types. We attempt to estimate the bolometric luminosity of the gas and and obtained results differing by an order of magnitude, log(Lbol/SFR)sim39-40, depending on whether intrinsic absorption in star-forming galaxies was allowed or not. Our theoretically most accurate, but in practice the most model dependent result for the intrinsic bolometric luminosity of ISM is Lbol/SFRsim 1.5x10^40 erg/s per Msun/yr. Assuming that core collapse supernovae are the main source of energy, it implies that epsilon_SNsim5x10^-2 (E_SN/10^51)^-1 of mechanical energy of supernovae is converted into thermal energy of ISM.
223 - Yang Chen 2018
Diffuse soft X-ray line emission is commonly used to trace the thermal and chemical properties of the hot interstellar medium, as well as its content, in nearby galaxies. Although resonant line scattering complicates the interpretation of the emissio n, it also offers an opportunity to measure the kinematics of the medium. We have implemented a direct Monte Carlo simulation scheme that enables us to account for resonant scattering effect in the medium, in principle, with arbitrary spatial, thermal, chemical, and kinematic distributions. Here we apply this scheme via dimensionless calculation to an isothermal, chemically uniform, and spherically symmetric medium with a radial density distribution characterized by a $beta$-model. This application simultaneously account for both optical depth-dependent spatial distortion and intensity change of the resonant line emission due to the scattering, consistent with previous calculations. We further apply the modeling scheme to the OVII and OVIII emission line complex observed in the XMM-Newton RGS spectrum of the M31 bulge. This modeling, though with various limitations due to its simplicity, shows that the resonant scattering could indeed account for much of the spatial distortion of the emission, as well as the relative strengths of the lines, especially the large forbidden to resonant line ratio of the OVII He$alpha$ triplet. We estimate the isotropic turbulence Mach number of the medium in M31 as $sim0.17$ for the first time and the line-emitting gas temperature as $sim2.3times10^6$ K. We conclude that the resonant scattering may in general play an important role in shaping the soft X-ray spectra of diffuse hot gas in normal galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا