ﻻ يوجد ملخص باللغة العربية
The Surface Cauchy-Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D model we show that the error committed by the SCB method is O(1) in the mesh size; however, we are able to identify an alternative approximation parameter - the stiffness of the interaction potential - with respect to which the error in the mean strain is exponentially small. Our analysis naturally suggests an improvement of the SCB model by enforcing atomistic mesh spacing in the normal direction at the free boundary.
We focus on a highly nonlinear evolutionary abstract PDE system describing volume processes coupled with surfaces processes in thermoviscoelasticity, featuring the quasi-static momentum balance, the equation for the unidirectional evolution of an int
We study the mathematical properties of a general model of cell division structured with several internal variables. We begin with a simpler and specific model with two variables, we solve the eigenvalue problem with strong or weak assumptions, and d
In this paper, we present a semiclassical description of surface waves or modes in an elastic medium near a boundary, in spatial dimension three. The medium is assumed to be essentially stratified near the boundary at some scale comparable to the wav
The over-relaxation approach is an alternative to the Jin-Xin relaxation method (Jin and Xin [1]) in order to apply the equilibrium source term in a more precise way (Coulette et al. [2, 3]). This is also a key ingredient of the Lattice-Boltzmann met
A two-layer fluid system separated by a pycnocline in the form of an internal wave is considered. The lower layer is infinitely deep, with a higher density than the upper layer which is bounded above by a flat surface. The fluids are incompressible a