ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Intrinsic Electronic Properties on Light Transmission through Subwavelength Holes on Gold and MgB2 Thin Films

164   0   0.0 ( 0 )
 نشر من قبل Xianggang Qiu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how intrinsic material properties modify light transmission through subwavelength hole arrays on thin metallic films in the THz regime. We compare the temperature-dependent transmittance of Au films and MgB$_{2}$ films. The experimental data is consistent with analytical calculations, and is attributed to the temperature change of the conductivity of both films. The transmission versus conductivity is interpreted within the open resonator model when taking the skin depth into consideration. We also show that the efficiency of this temperature control depends on the ratio of the transmission peak frequency to the superconducting energy gap in MgB$_{2}$ films.



قيم البحث

اقرأ أيضاً

We establish quasi-two-dimensional thin films of iron-based superconductors (FeSCs) as a new high-temperature platform for hosting intrinsic time-reversal-invariant helical topological superconductivity (TSC). Based on the combination of Dirac surfac e state and bulk extended $s$-wave pairing, our theory should be directly applicable to a large class of experimentally established FeSCs, opening a new TSC paradigm. In particular, an applied electric field serves as a topological switch for helical Majorana edge modes in FeSC thin films, allowing for an experimentally feasible design of gate-controlled helical Majorana circuits. Applying an in-plane magnetic field drives the helical TSC phase into a higher-order TSC carrying corner-localized Majorana zero modes. Our proposal should enable the experimental realization of helical Majorana fermions.
124 - Z. Z. Li 2008
Single phase, c-axis oriented, e-doped, Sr1-xLaxCuO2 thin films were epitaxially grown on KTaO3 and DyScO3 substrates by reactive rf sputtering. As-grown films being insulating due to oxygen excess, oxygen reduction is necessary to observe supercondu ctivity. Two different procedures were employed to reach superconductivity. On one hand an in-situ reduction process was conducted on a series of films deposited on both types of substrates. On the other hand, an ex-situ reduction procedure was performed sequentially on a single film deposited on DyScO3. The study of the influence of oxygen reduction on the structural and electronic properties of the thin films is presented and discussed.
127 - R K Singh , Y Shen , R Gandikota 2007
Our Rutherford backscattering spectrometry (RBS) study has found that concentrations up to 7 atomic percent of Rb and Cs can be introduced to a depth of ~700 A in MgB2 thin films by annealing in quartz ampoules containing elemental alkali metals at < 350 degree centigrade. No significant change in transition temperature (Tc) was observed, in contrast to an earlier report of very high Tc (>50 K) for similar experiments on MgB2 powders. The lack of a significant change in Tc and intra-granular carrier scattering suggests that Rb and Cs diffuse into the film, but do not enter the grains. Instead, the observed changes in the electrical properties, including a significant drop in Jc and an increase in delta rho (rho300-rho40), arise from a decrease in inter-granular connectivity due to segregation of the heavy alkaline metals and other impurities (i.e. C and O) introduced into the grain boundary regions during the anneals.
We have studied structural and superconducting properties of MgB2 thin films doped with carbon during the hybrid physical-chemical vapor deposition process. A carbon-containing metalorganic precursor bis(cyclopentadienyl)magnesium was added to the ca rrier gas to achieve carbon doping. As the amount of carbon in the films increases, the resistivity increases, Tc decreases, and the upper critical field increases dramatically as compared to the clean films. The self-field Jc in the carbon-doped films is lower than that in the clean films, but Jc remains relatively high to much higher magnetic fields, indicating stronger pinning. Structurally, the doped films are textured with nano-grains and highly resistive amorphous areas at the grain boundaries. The carbon doping approach can be used to produce MgB2 materials for high magnetic field applications.
A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquids viscosity. Inspired by recent progresses on the dynamics of l iquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا