ﻻ يوجد ملخص باللغة العربية
We show how intrinsic material properties modify light transmission through subwavelength hole arrays on thin metallic films in the THz regime. We compare the temperature-dependent transmittance of Au films and MgB$_{2}$ films. The experimental data is consistent with analytical calculations, and is attributed to the temperature change of the conductivity of both films. The transmission versus conductivity is interpreted within the open resonator model when taking the skin depth into consideration. We also show that the efficiency of this temperature control depends on the ratio of the transmission peak frequency to the superconducting energy gap in MgB$_{2}$ films.
We establish quasi-two-dimensional thin films of iron-based superconductors (FeSCs) as a new high-temperature platform for hosting intrinsic time-reversal-invariant helical topological superconductivity (TSC). Based on the combination of Dirac surfac
Single phase, c-axis oriented, e-doped, Sr1-xLaxCuO2 thin films were epitaxially grown on KTaO3 and DyScO3 substrates by reactive rf sputtering. As-grown films being insulating due to oxygen excess, oxygen reduction is necessary to observe supercondu
Our Rutherford backscattering spectrometry (RBS) study has found that concentrations up to 7 atomic percent of Rb and Cs can be introduced to a depth of ~700 A in MgB2 thin films by annealing in quartz ampoules containing elemental alkali metals at <
We have studied structural and superconducting properties of MgB2 thin films doped with carbon during the hybrid physical-chemical vapor deposition process. A carbon-containing metalorganic precursor bis(cyclopentadienyl)magnesium was added to the ca
A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquids viscosity. Inspired by recent progresses on the dynamics of l