ﻻ يوجد ملخص باللغة العربية
We study the photoluminescence (PL) of a two-dimensional liquid of oriented dipolar excitons in In_{x}Ga_{1-x}As coupled double quantum wells confined to a microtrap. Generating excitons outside the trap and transferring them at lattice temperatures down to T = 240 mK into the trap we create cold quasi-equilibrium bosonic ensembles of some 1000 excitons with thermal de Broglie wavelengths exceeding the excitonic separation. With decreasing temperature and increasing density n <= 5*10^10 cm^{-2} we find an increasingly asymmetric PL lineshape with a sharpening blue edge and a broad red tail which we interpret to reflect correlated behavior mediated by dipolar interactions. From the PL intensity I(E) below the PL maximum at E_{0} we extract at T < 5 K a distinct power law I(E) sim (E_{0}-E)^-|alpha| with -|alpha|sim -0.8 in the range E_{0}-E of 1.5-4 meV, comparable to the dipolar interaction energy.
Correlations of luminescence intensity have been studied under Bose-Einstein condensation of dipolar excitons in the temperature range of 0.45-4.2 K. Photoexcited dipolar excitons were collected in a lateral trap in GaAs/AlGaAs Schottky-diode heteros
Most theoretical studies of nanoscale transport in molecular junctions rely on the combination of the Landauer formalism with Kohn-Sham density functional theory (DFT) using standard local and semilocal functionals to approximate exchange and correla
Diluted magnetic semiconductors are materials well known to exhibit strong correlations which typically manifest in carrier-mediated magnetic ordering. In this Rapid Communication, we show that the interaction between excitons and magnetic impurities
We report a two-dimensional artificial lattice for dipolar excitons confined in a GaAs double quantum well. Exploring the regime of large fillings per lattice site, we verify that the lattice depth competes with the magnitude of excitons repulsive di
We show that a magnetic field perpendicular to an AlGaAs/GaAs coupled quantum well efficiently traps dipolar excitons and leads to the stabilization of the excitonic formation and confinement in the illumination area. Hereby, the density of dipolar e