ﻻ يوجد ملخص باللغة العربية
We report a two-dimensional artificial lattice for dipolar excitons confined in a GaAs double quantum well. Exploring the regime of large fillings per lattice site, we verify that the lattice depth competes with the magnitude of excitons repulsive dipolar interactions to control the degree of localisation in the lattice potential. Moreover, we show that dipolar excitons radiate a narrow-band photoluminescence, with a spectral width of a few hundreds of micro-eV at 340 mK, in both localised and delocalised regimes. This makes our device suitable for explorations of dipolar excitons quasi-condensation in a periodic potential.
Emergence of algebraic quasi-long-range order is a key feature of superfluid phase transitions at two dimensions. For this reduced dimensionality interactions prevent Bose-Einstein condensation with true long range order, at any finite temperature. H
Recently we reported on the condensation of cold, electrostatically trapped dipolar excitons in GaAs bilayer heterostructure into a new, dense and dark collective phase. Here we analyze and discuss in detail the experimental findings and the emerging
Correlations of luminescence intensity have been studied under Bose-Einstein condensation of dipolar excitons in the temperature range of 0.45-4.2 K. Photoexcited dipolar excitons were collected in a lateral trap in GaAs/AlGaAs Schottky-diode heteros
We study anisotropies of helicity modulus, excitation spectrum, sound velocity and angle-resolved luminescence spectrum in a two-dimensional system of interacting excitons in a periodic potential. Analytical expressions for anisotropic corrections to
We propose a theory of interference contributions to the two-dimensional exciton diffusion coefficient. The theory takes into account four spin states of the heavy-hole exciton. An interplay of the single particle, electron and hole, spin splittings