ﻻ يوجد ملخص باللغة العربية
Within the framework of the HerM33es Key Project for Herschel and in combination with multi-wavelength data, we study the Spectral Energy Distribution (SED) of a set of HII regions in the Local Group Galaxy M33. Using the Halpha emission, we perform a classification of a selected HII region sample in terms of morphology, separating the objects in filled, mixed, shell and clear shell objects. We obtain the SED for each HII region as well as a representative SED for each class of objects. We also study the emission distribution of each band within the regions. We find different trends in the SEDs for each morphological type that are related to properties of the dust and their associated stellar cluster. The emission distribution of each band within the region is different for each morphological type of object.
Within the framework of the Herschel M 33 extended survey HerM33es we study the Spectral Energy Distribution (SED) of a set of HII regions in M 33 as a function of the morphology. We present a catalogue of 119 HII regions morphologically classified:
Within the framework of the HERM33ES Key Project, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission s
The shape of the OB-star spectral energy distribution is a critical component in many diagnostics of the ISM and galaxy properties. We use single-star HII regions from the LMC to quantitatively examine the ionizing SEDs from widely available CoStar,
Within the key project Herschel M33 extended survey (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M33, combining the study of local conditions affecting individual s
The conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. We study here the dust properties of a set of