ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Nonstandard Standard Model Backgrounds with LHC Monojets

347   0   0.0 ( 0 )
 نشر من قبل Alexander Friedland
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Monojet events at colliders have been used to probe models of dark matter and extra dimensions. We point out that these events also probe extensions of the Standard Model modifying neutrino-quark interactions. Such nonstandard interactions (NSI) have been discussed in connection with neutrino oscillation experiments. Assuming first that NSI remain contact at LHC energies, we derive stringent bounds that approach the levels suggested by the Boron-8 solar data. We next explore the possibility that the mediators of the NSI can be produced at colliders. The constraints are found to be strongest for mediator masses in the 10^2-10^3 GeV range, with the best bounds above ~ 200 GeV coming from ATLAS and below from CDF. For mediators with masses below 30 GeV the monojet bounds are weaker than in the contact limit. These results also directly apply to light dark matter searches. Lastly, we discuss how neutrino NSI can be distinguished from dark matter or Kaluza-Klein states with charged lepton searches.



قيم البحث

اقرأ أيضاً

New limits on the weak mixing angle and on the electron neutrino effective charge radius in the low energy regime, below 100 MeV, are obtained from a combined fit of all electron-(anti)neutrino electron elastic scattering measurements. We have includ ed the recent TEXONO measurement with a CsI (Tl) detector. Only statistical error of this measurement has been taken into account. Weak mixing angle is found to be sin^2 theta_W = 0.255 +0.022 -0.023. The electron neutrino effective charge radius squared is bounded to be r^2 = (0.9 +0.9 -1.0) x 10^{-32} cm^2. The sensitivity of future low energy neutrino experiments to nonstandard interactions of neutrinos with quarks is also discussed.
This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High L uminosity (HL) phase of the LHC, defined as $3~mathrm{ab}^{-1}$ of data taken at a centre-of-mass energy of $14~mathrm{TeV}$, and of a possible future upgrade, the High Energy (HE) LHC, defined as $15~mathrm{ab}^{-1}$ of data at a centre-of-mass energy of $27~mathrm{TeV}$. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by $20-50%$ on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics.
We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the n ew scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.
We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode u_e --> u_mu and con sider two detectors, one at 3000 km and the other at 7000 km. Assuming the effects of NSI at the production and the detection are negligible, we discuss the sensitivities to NSI and the simultaneous determination of theta_{13} and delta by examining the effects in the neutrino propagation of various systems in which two NSI parameters epsilon_{alpha beta} are switched on. The sensitivities to off-diagonal epsilons are found to be excellent up to small values of theta_{13}. We demonstrate that the two-detector setting is powerful enough to resolve the theta_{13}-NSI confusion problem. We believe that the results obtained in this paper open the door to the possibility of using neutrino factory as a discovery machine for NSI while keeping its primary function of performing precision measurements of the lepton mixing parameters.
We present the transverse momentum spectrum of groomed jets in di-jet events for $e^+e^-$ collisions and semi-inclusive deep inelastic scattering (SIDIS). The jets are groomed using a soft-drop grooming algorithm which helps in mitigating effects of non-global logarithms and underlying event. At the same time, by reducing the final state hadronization effects, it provides a clean access to the non-perturbative part of the evolution of transverse momentum dependent (TMD) distributions. In SIDIS experiments we look at the transverse momentum of the groomed jet measured w.r.t. the incoming hadron in the Breit frame. Because the final state hadronization effects are significantly reduced, the SIDIS case allows to probe the TMD parton distribution functions. We discuss the sources of non-perturbative effects in the low transverse momentum region including novel (but small) effects that arise due to grooming. We derive a factorization theorem within SCET and resum any large logarithm in the measured transverse momentum up to NNLL accuracy using the $zeta$-prescription as implemented in the artemide package and provide a comparison with simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا