ترغب بنشر مسار تعليمي؟ اضغط هنا

Distinguishing Standard Model Extensions using Monotop Chirality at the LHC

137   0   0.0 ( 0 )
 نشر من قبل Yu Gao
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.



قيم البحث

اقرأ أيضاً

This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High L uminosity (HL) phase of the LHC, defined as $3~mathrm{ab}^{-1}$ of data taken at a centre-of-mass energy of $14~mathrm{TeV}$, and of a possible future upgrade, the High Energy (HE) LHC, defined as $15~mathrm{ab}^{-1}$ of data at a centre-of-mass energy of $27~mathrm{TeV}$. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by $20-50%$ on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics.
We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop producti on modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.
193 - Sudhir Kumar Gupta 2009
Littlest Higgs model with T-parity and Minimal Supersymmtric standard Model with R-parity both give similar signatures in collider experiment with a huge amount of missing energy depending upon mass of the lightest T-odd/R-odd particle. In this talk, I will discuss possibility of distinguishing the two models at the LHC in hadronically quiet signal where masses of R-odd particles are identical to masses of T-odd particles.
Extending the Standard Model (SM) scalar sector via one or multiple Higgs field(s) in higher representation brings one or more charged Higgs bosons in the spectrum. Some of these gauge representations with appropriate hypercharge can bring up doubly charged Higgs boson and can be easily distinguished from the existing models with only singly charged Higgs boson. In this study we focus on distinguishing the singly charged Higgs bosons from different representations, viz. doublets and triplets of $SU(2)_L$ gauge group. We consider a supersymmetric extension of SM with a gauge singlet and $SU(2)_L$ triplet with $Y=0$ as a benchmark scenario with the possibility of rich phenomenology due to existence of light pseudoscalar for $Z_3$ symmetric superpotential. A detailed collider simulation considering all the SM backgrounds has been carried out in order to classify the final states which are favourable to charged Higgs boson from one particular representation than others. We show that such different representations can be probed an distinguished via looking at single charged Higgs boson phenomenology at the LHC with 14 TeV center of mass energy within $sim 50$ fb$^{-1}$ of integrated luminosity.
Electrically-neutral massive color-singlet and color-octet vector bosons, which are often predicted in Beyond the Standard Model theories, have the potential to be discovered as dijet resonances at the LHC. A color-singlet resonance that has leptopho bic couplings needs further investigation to be distinguished from a color-octet one. In previous work, we introduced a method for discriminating between the two kinds of resonances when their couplings are flavor-universal, using measurements of the dijet resonance mass, total decay width and production cross-section. Here, we describe an extension of that method to cover a more general scenario, in which the vector resonances could have flavor non-universal couplings; essentially, we incorporate measurements of the heavy-flavor decays of the resonance into the method. We present our analysis in a model-independent manner for a dijet resonance with mass 2.5-6.0 TeV at the LHC with $sqrt{s}=14$ TeV and integrated luminosities 30, 100, 300 and 1000 ${rm fb}^{-1}$, and show that the measurements of the heavy-flavor decays should allow conclusive identification of the vector boson. Note that our method is generally applicable even for a Z boson with non-Standard invisible decays. We include an appendix of results for various resonance couplings and masses to illustrate how well each observable must be measured to distinguish colorons from Z bosons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا