ﻻ يوجد ملخص باللغة العربية
We have studied the origin of excess noise in superconducting transition-edge sensors (TES) with several different detector designs. We show that most of the observed noise and complex impedance features can be explained by a thermal model consisting of three bodies. We suggest that one of the thermal blocks and the corresponding thermal fluctuation noise arises due to the high-frequency thermal decoupling of the normal and superconducting phase regions inside the TES film. Our results are also consistent with the prediction that in thin bilayer proximitized superconductors, the jump in heat capacity at the critical temperature is smaller than the universal BCS theory result.
In order to investigate the origin of the until now unaccounted excess noise and to minimize the uncontrollable phenomena at the transition in X-ray microcalorimeters we have developed superconducting transition-edge sensors into an edgeless geometry
A topological superconductor nanowire bears a Majorana bound state at each of its ends, leading to unique transport properties. As a way to probe these, we study the finite frequency noise of a biased junction between a normal metal and a topological
The metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing upon cooling from a charge density wave state. The interplay between s
In physical systems, coupling to the environment gives rise to dissipation and decoherence. For nanoscopic materials this may be a determining factor of their physical behavior. However, even for macroscopic many-body systems, if the strength of this
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An