ترغب بنشر مسار تعليمي؟ اضغط هنا

Normal metal - superconductor decoupling as a source of thermal fluctuation noise in transition-edge sensors

197   0   0.0 ( 0 )
 نشر من قبل Ilari J. Maasilta
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the origin of excess noise in superconducting transition-edge sensors (TES) with several different detector designs. We show that most of the observed noise and complex impedance features can be explained by a thermal model consisting of three bodies. We suggest that one of the thermal blocks and the corresponding thermal fluctuation noise arises due to the high-frequency thermal decoupling of the normal and superconducting phase regions inside the TES film. Our results are also consistent with the prediction that in thin bilayer proximitized superconductors, the jump in heat capacity at the critical temperature is smaller than the universal BCS theory result.



قيم البحث

اقرأ أيضاً

In order to investigate the origin of the until now unaccounted excess noise and to minimize the uncontrollable phenomena at the transition in X-ray microcalorimeters we have developed superconducting transition-edge sensors into an edgeless geometry , the so-called Corbino disk (CorTES), with superconducting contacts in the centre and at the outer perimeter. The measured rms current noise and its spectral density can be modeled as resistance noise resulting from fluctuations near the equilibrium superconductor-normal metal boundary
A topological superconductor nanowire bears a Majorana bound state at each of its ends, leading to unique transport properties. As a way to probe these, we study the finite frequency noise of a biased junction between a normal metal and a topological superconductor nanowire. We use the non-equilibrium Keldysh formalism to compute the finite frequency emission and absorption noise to all order in the tunneling amplitude, for bias voltages below and above the superconducting gap. We observe noticeable structures in the absorption and emission noise, which we can relate to simple transport processes. The presence of the Majorana bound state is directly related to a characteristic behavior of the noise spectrum at low frequency. We further compute the noise measurable with a realistic setup, based on the inductive coupling to a resonant LC circuit, and discuss the impact of the detector temperature. We have also computed the emission noise for a non-topological system with a resonant level, exhibiting a zero-energy Andreev bound state, in order to show the specificities of the topological case. Our results offer an original tool for the further characterization of the presence of Majorana bound states in condensed matter systems.
The metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing upon cooling from a charge density wave state. The interplay between s uch phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based, and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved highly controversial. Here, we study a prototypical example, $2H$-NbSe$_2$, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterised by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking. Non-negligible interlayer coupling further drives a rich three-dimensional momentum-dependence of the underlying Fermi surface spin texture. Together, these findings necessitate a fundamental re-investigation of the nature of charge order and superconducting pairing in NbSe$_2$ and related TMDCs.
In physical systems, coupling to the environment gives rise to dissipation and decoherence. For nanoscopic materials this may be a determining factor of their physical behavior. However, even for macroscopic many-body systems, if the strength of this coupling is sufficiently strong, their ground state properties and phase diagram may be severely modified. Also dissipation is essential to allow a system in the presence of a time dependent perturbation to attain a steady, time independent state. In this case, the non-equilibrium phase diagram depends on the intensity of the perturbation and on the strength of the coupling of the system to the outside world. In this paper, we investigate the effects of both, dissipation and time dependent external sources in the phase diagram of a many-body system at zero and finite temperatures. For concreteness we consider the specific case of a superconducting layer under the action of an electric field and coupled to a metallic substrate. The former arises from a time dependent vector potential minimally coupled to the electrons in the layer. We introduce a Keldysh approach that allows to obtain the time dependence of the superconducting order parameter in an adiabatic regime. We study the phase diagram of this system as a function of the electric field, the coupling to the metallic substrate and temperature.
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An optical interferometer with a beam splitter can be considered as a classical analogue for this system. All measurements were performed at temperatures well below 1 K. The interference can be observed as periodic oscillations of the tunnel current (voltage) through the junction at fixed bias voltage (current) as a function of a perpendicular magnetic field. The magnitude of the oscillations depends on the bias point. It reaches a maximum at energy $eV$ which is close to the superconducting gap and decreases with an increase of temperature. Surprisingly, the period of the oscillations in units of magnetic flux $Delta Phi$ is equal neither to $h/e$ nor to $h/2e$, but significantly exceeds these values for larger loop circumferences. The origin of the phenomena is not clear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا