ﻻ يوجد ملخص باللغة العربية
A topological superconductor nanowire bears a Majorana bound state at each of its ends, leading to unique transport properties. As a way to probe these, we study the finite frequency noise of a biased junction between a normal metal and a topological superconductor nanowire. We use the non-equilibrium Keldysh formalism to compute the finite frequency emission and absorption noise to all order in the tunneling amplitude, for bias voltages below and above the superconducting gap. We observe noticeable structures in the absorption and emission noise, which we can relate to simple transport processes. The presence of the Majorana bound state is directly related to a characteristic behavior of the noise spectrum at low frequency. We further compute the noise measurable with a realistic setup, based on the inductive coupling to a resonant LC circuit, and discuss the impact of the detector temperature. We have also computed the emission noise for a non-topological system with a resonant level, exhibiting a zero-energy Andreev bound state, in order to show the specificities of the topological case. Our results offer an original tool for the further characterization of the presence of Majorana bound states in condensed matter systems.
We propose a spin Hall device to induce a large spin Hall effect in a superconductor/normal metal (SN) junction. The side jump and skew scattering mechanisms are both taken into account to calculate the extrinsic spin Hall conductivity in the normal
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An
In s-wave superconductors the Cooper pair wave function is isotropic in momentum space. This property may also be expected for Cooper pairs entering a normal metal from a superconductor due to the proximity effect. We show, however, that such a deduc
In this work, we investigate the thermoelectric properties of a hybrid junction realised coupling surface states of a three-dimensional topological insulator with a conventional $s$-wave superconductor. We focus on the ballistic devices and study the
This work discusses theoretically the interplay between the superconducting and ferromagnetic proximity effects, in a diffusive normal metal strip in contact with a superconductor and a non-uniformly magnetized ferromagnetic insulator. The quasiparti