ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi LAT Observations of Supernova Remnants Interacting with Molecular Clouds

109   0   0.0 ( 0 )
 نشر من قبل Daniel Castro
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of gamma-ray emission coincident with four supernova remnants (SNRs) using data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. G349.7+0.2, CTB 37A, 3C 391 and G8.7-0.1 are supernova remnants known to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in their directions. SNR shocks are expected to be sites of cosmic rays acceleration, and clouds of dense material can provide effective targets for production of gamma-rays from pion-decay. The observations reveal unresolved sources in the direction of G349.7+0.2, CTB 37A and 3C 391, and a possibly extended source coincident with G8.7-0.1, all with significance levels greater than 10 sigma.



قيم البحث

اقرأ أيضاً

The giant molecular clouds (MCs) found in the Milky Way and similar galaxies play a crucial role in the evolution of these systems. The supernova explosions that mark the death of massive stars in these regions often lead to interactions between the supernova remnants (SNRs) and the clouds. These interactions have a profound effect on our understanding of SNRs. Shocks in SNRs should be capable of accelerating particles to cosmic ray (CR) energies with efficiencies high enough to power Galactic CRs. X-ray and gamma-ray studies have established the presence of relativistic electrons and protons is some SNRs and provided strong evidence for diffusive shock acceleration as the primary acceleration mechanism, including strongly amplified magnetic fields, temperature and ionization effects on the shock-heated plasmas, and modifications to the dynamical evolution of some systems. Because protons dominate the overall energetics of the CRs, it is crucial to understand this hadronic component even though electrons are much more efficient radiators and it can be difficult to identify the hadronic component. However, near MCs the densities are sufficiently high to allow the gamma-ray emission to be dominated by protons. Thus, these interaction sites provide some of our best opportunities to constrain the overall energetics of these particle accelerators. Here we summarize some key properties of interactions between SNRs and MCs, with an emphasis on recent X-ray and gamma-ray studies that are providing important constraints on our understanding of cosmic rays in our Galaxy.
172 - D. Fernandez , M. Dalton , P. Eger 2013
About 30 Galactic supernova remnants (SNRs) are thought to be physically associated with molecular clouds (MCs). These systems are prime g-ray source candidates as the accelerated particles from shock fronts collide with the surrounding high-density medium thus emitting gamma-rays through hadronic interactions. However only a handful of such interacting SNRs are detected at TeV energies. We report the current status of the High Energy Stereoscopic System (H.E.S.S.) observations towards these SNR-MC systems, with a particular emphasis on the latest results.
In this paper we report on the detection of $gamma$-ray emission coincident with the Galactic supernova remnant Kesteven 79 (Kes 79). We analysed approximately 52 months of data obtained with the Large Area Telescope (LAT) on board the Fermi Gamma-ra y Space Telescope. Kes 79 is thought to be interacting with adjacent molecular clouds based on the presence of strong $^{12}$CO J = 1 $rightarrow$ 0 and HCO$^{+}$ J = 1 $rightarrow$ 0 emission and the detection of 1720 MHz line emission towards the east of the remnant. Acceleration of cosmic rays is expected to occur at SNR shocks, and SNRs interacting with dense molecular clouds provide a good testing ground for detecting and analysing the production of $gamma$-rays from the decay of $pi^0$ into two $gamma$-ray photons. This analysis investigates $gamma$-ray emission coincident with Kes 79, which has a detection significance of $sim 7 sigma$. Additionally we present an investigation of the spatial and spectral characteristics of Kes 79 using multiple archival XMM-Newton observations of this remnant. We determine the global X-ray properties of Kes 79 and estimate the ambient density across the remnant. We also performed a similar analysis for Galactic SNR Kesteven 78 (Kes 78), but due to large uncertainties in the $gamma$-ray background model, no conclusion can be made about an excess of GeV $gamma$-ray associated with the remnant.
Supernova remnants (SNRs) have been prime candidates for Galactic cosmic-ray accelerators. When low-energy cosmic-ray protons (LECRp) collide with interstellar gas, they ionize neutral iron atoms and emit the neutral iron line (Fe I K$alpha$) at 6.40 keV. We search for the iron K-shell line in seven SNRs from the Suzaku archive data of the Galactic plane in the $6^{circ} lesssim l lesssim 40^{circ}, |b| < 1^{circ}$ region. All these SNRs interact with molecular clouds. We discover Fe I K$alpha$ line emissions from five SNRs (W28, Kes 67, Kes 69, Kes 78, and W44). The spectra and morphologies suggest that the Fe I K$alpha$ line is produced by interactions between LECRp and the adjacent cold gas. The proton energy density is estimated to be $gtrsim$ 10-100 eV cm$^{-3}$, which is more than 10 times higher than that in the ambient interstellar medium.
Axionlike-particles (ALPs) are one promising type of dark matter candidate particle that may generate detectable effects on $gamma$-ray spectra other than the canonical weakly interacting massive particles. In this work we search for such oscillation effects in the spectra of supernova remnants caused by the photon-ALP conversion, using the Fermi Large Area Telescope data. Three bright supernova remnants, IC443, W44, and W51C, are analyzed. The inclusion of photon-ALP oscillations yields an improved fit to the $gamma$-ray spectrum of IC443, which gives a statistical significance of $4.2sigma$ in favor of such spectral oscillation. However, the best-fit parameters of ALPs ($m_{a}=6.6,{rm neV}$, $g_{agamma}=13.4 times 10^{-11},{rm GeV}^{-1}$) are in tension with the upper bound ($g_{agamma}< 6.6 times 10^{-11},{rm GeV}^{-1}$) set by the CAST experiment. It is difficult to explain the results using the systematic uncertainties of the flux measurements. We speculate that the irregularity displayed in the spectrum of IC443 may be due to the superposition of the emission from different parts of the remnant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا