ﻻ يوجد ملخص باللغة العربية
Motivated by recent suggestions that a number of observed galaxy clusters have masses which are too high for their given redshift to occur naturally in a standard model cosmology, we use Extreme Value Statistics to construct confidence regions in the mass-redshift plane for the most extreme objects expected in the universe. We show how such a diagram not only provides a way of potentially ruling out the concordance cosmology, but also allows us to differentiate between alternative models of enhanced structure formation. We compare our theoretical prediction with observations, placing currently observed high and low redshift clusters on a mass-redshift diagram and find -- provided we consider the full sky to avoid a posteriori selection effects -- that none are in significant tension with concordance cosmology.
Power-law cosmologies, in which the cosmological scale factor evolves as a power law in the age, $a propto t^{alpha}$ with $alpha ga 1$, regardless of the matter content or cosmological epoch, is comfortably concordant with a host of cosmological obs
NIKA2 is a dual-band millimetric camera of thousands of Kinetic Inductance Detectors (KID) installed at the IRAM 30-meter telescope in the Spanish Sierra Nevada. The instrument commissioning was completed in September 2017, and NIKA2 is now open to t
According to the cosmological principle, galaxy cluster sizes and cluster densities, when averaged over sufficiently large volumes of space, are expected to be constant everywhere, except for a slow variation with look-back time (redshift). Thus, ave
We test the assumption of hydrostatic equilibrium in an X-ray luminosity selected sample of 50 galaxy clusters at $0.15<z<0.3$ from the Local Cluster Substructure Survey (LoCuSS). Our weak-lensing measurements of $M_{500}$ control systematic biases t
We investigate potential systematic effects in constraining the amplitude of primordial fluctuations sigma_8 arising from the choice of halo mass function in the likelihood analysis of current and upcoming galaxy cluster surveys. We study the widely