ﻻ يوجد ملخص باللغة العربية
We test the assumption of hydrostatic equilibrium in an X-ray luminosity selected sample of 50 galaxy clusters at $0.15<z<0.3$ from the Local Cluster Substructure Survey (LoCuSS). Our weak-lensing measurements of $M_{500}$ control systematic biases to sub-4 per cent, and our hydrostatic measurements of the same achieve excellent agreement between XMM-Newton and Chandra. The mean ratio of X-ray to lensing mass for these 50 clusters is $beta_{rm X}=0.95pm0.05$, and for the 44 clusters also detected by Planck, the mean ratio of Planck mass estimate to LoCuSS lensing mass is $beta_{rm P}=0.95pm0.04$. Based on a careful like-for-like analysis, we find that LoCuSS, the Canadian Cluster Comparison Project (CCCP), and Weighing the Giants (WtG) agree on $beta_{rm P}simeq0.9-0.95$ at $0.15<z<0.3$. This small level of hydrostatic bias disagrees at $sim5sigma$ with the level required to reconcile Planck cosmology results from the cosmic microwave background and galaxy cluster counts.
We test the assumption of strict hydrostatic equilibrium in galaxy cluster MS2137.3-2353 (MS 2137) using the latest CHANDRA X-ray observations and results from a combined strong and weak lensing analysis based on optical observations. We deproject th
In this paper we investigate the level of hydrostatic equilibrium (HE) in the intra-cluster medium of simulated galaxy clusters, extracted from state-of-the-art cosmological hydrodynamical simulations performed with the Smoothed-Particle-Hydrodynamic
We present the reconstruction of hydrostatic mass profiles in 13 X-ray luminous galaxy clusters that have been mapped in their X-ray and SZ signal out to $R_{200}$ for the XMM-Newton Cluster Outskirts Project (X-COP). Using profiles of the gas temper
(Abridged) We use Subaru data to conduct a detailed weak-lensing study of the dark matter distribution in a sample of 30 X-ray luminous galaxy clusters at 0.15<z<0.3. A weak-lensing signal is detected at high statistical significance in each cluster,
We compare X-ray and caustic mass profiles for a sample of 16 massive galaxy clusters. We assume hydrostatic equilibrium in interpreting the X-ray data, and use large samples of cluster members with redshifts as a basis for applying the caustic techn