ﻻ يوجد ملخص باللغة العربية
Enhanced electron cooling is demonstrated in a strained-silicon/superconductor tunnel junction refrigerator of volume 40 um^3. The electron temperature is reduced from 300 mK to 174 mK, with the enhancement over an unstrained silicon control (300 mK to 258 mK) being attributed to the smaller electron-phonon coupling in the strained case. Modeling and the resulting predictions of silicon-based cooler performance are presented. Further reductions in the minimum temperature are expected if the junction sub-gap leakage and tunnel resistance can be reduced. However, if only tunnel resistance is reduced, Joule heating is predicted to dominate.
The diversity of various manganese types and its complexes in the Mn-doped ${rm A^{III}B^V}$ semiconductor structures leads to a number of intriguing phenomena. Here we show that the interplay between the ordinary substitutional Mn acceptors and inte
Optical cavity cooling of mechanical resonators has recently become a research frontier. The cooling has been realized with a metal-coated silicon microlever via photo-thermal force and subsequently with dielectric objects via radiation pressure. Her
The search for half-metals and spin-gapless semiconductors has attracted extensive attention in material design for spintronics. Existing progress in such a search often requires peculiar atomistic lattice configuration and also lacks active control
We report transport measurements on a semiconductor quantum dot with a small number of confined electrons. In the Coulomb blockade regime, conduction is dominated by cotunneling processes. These can be either elastic or inelastic, depending on whethe
Electron-electron interactions (EEIs) in 2D van der Waals structures is one of the topics with high current interest in physics. We report the observation of a negative parabolic magnetoresistance (MR) in multilayer 2D semiconductor InSe beyond the l