ﻻ يوجد ملخص باللغة العربية
We present results from three-dimensional, self-gravitating, radiation-hydrodynamic simulations of low-mass protostellar outflows. We construct synthetic observations in 12CO in order to compare with observed outflows and evaluate the effects of beam resolution and outflow orientation on inferred outflow properties. To facilitate the comparison, we develop a quantitative prescription for measuring outflow opening angles. Using this prescription, we demonstrate that, in both simulations and synthetic observations, outflow opening angles broaden with time similarly to observed outflows. However, the interaction between the outflowing gas and the turbulent core envelope produces significant asymmetry between the red and blue shifted outflow lobes. We find that applying a velocity cutoff may result in outflow masses that are underestimated by a factor 5 or more, and masses derived from optically thick CO emission further underpredict the mass of the high-velocity gas by a factor of 5-10. Derived excitation temperatures indicate that outflowing gas is hotter than the ambient gas with temperature rising over time, which is in agreement with the simulation gas temperatures. However, excitation temperatures are otherwise not well correlated with the actual gas temperature.
We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment, and whether they form a small or large number of protostars. Our simulations use the Orion adaptive me
(Abridged) Stars more massive than $20-30M_{odot}$ are so luminous that the radiation force on the cooler, more opaque outer layers can balance or exceed the force of gravity. These near or super-Eddington outer envelopes represent a long standing ch
We investigate on the spatial and velocity distribution of H2O along the L1448 outflow, its relationship with other tracers, and its abundance variations, using maps of the o-H2O 1_{10}-1_{01} and 2_{12}-1_{01} transitions taken with the Herschel-HIF
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties
Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodyn