ترغب بنشر مسار تعليمي؟ اضغط هنا

A far-infrared survey of bow shocks and detached shells around AGB stars and red supergiants

240   0   0.0 ( 0 )
 نشر من قبل Nick Cox
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Far-infrared Herschel/PACS images at 70 and 160 micron of a sample of 78 Galactic evolved stars are used to study the (dust) emission structures, originating from stellar wind-ISM interaction. In addition, two-fluid hydrodynamical simulations of the coupled gas and dust in wind-ISM interactions are used to compare with the observations. Four distinct classes of wind-ISM interaction (i.e. fermata, eyes, irregular, and rings) are identified and basic parameters affecting the morphology are discussed. We detect bow shocks for ~40% of the sample and detached rings for ~20%. De-projected stand-off distances (R_0) -- defined as the distance between the central star and the nearest point of the interaction region -- of the detected bow shocks (fermata and eyes) are derived from the PACS images and compared to previous results, model predictions and the simulations. All observed bow shocks have stand-off distances smaller than 1 pc. Observed and theoretical stand-off distances are used together to independently derive the local ISM density. Both theoretical (analytical) models and hydrodynamical simulations give stand-off distances for adopted stellar properties that are in good agreement with the measured de-projected stand-off distance of wind-ISM bow shocks. The possible detection of a bow shock -- for the distance limited sample -- appears to be governed by its physical size as set roughly by the stand-off distance. In particular the stars peculiar space velocity and the density of the ISM appear decisive in detecting emission from bow shocks or detached rings. Tentatively, the eyes class objects are associated to (visual) binaries, while the rings generally appear not to occur for M-type stars, only for C or S-type objects that have experienced a thermal pulse.



قيم البحث

اقرأ أيضاً

131 - Jonathan Mackey 2012
A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent 3D simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bow shock is very young (<30000 years old), hence Betelgeuse may have only recently become a RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into 2D hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as it undergoes the transition to a RSG near the end of its life. We find that the collapsing BSG wind bubble induces a bow shock-shaped inner shell around the RSG wind that resembles Betelgeuses bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow shock generated by the now defunct BSG winds interaction with the ISM. We suggest that this outer shell could explain the bar feature located (at least in projection) just in front of Betelgeuses bow shock.
Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to observations of the detached gas shells. We observe the polarised, dust-scattered stellar light around these stars using the PolCor instrument mounted on the ESO 3.6m telescope. Observations were done with a coronographic mask to block out the direct stellar light. The polarised images clearly show the detached shells. Using a dust radiative transfer code to model the dust-scattered polarised light, we constrain the radii and widths of the shells to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and V644 Sco, respectively. Both shells have an overall spherical symmetry and widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission directly with high spatial-resolution maps of CO(3-2) emission from the shell observed with ALMA. We find that the dust and gas coincide almost exactly, indicating a common evolution. The data presented here for R Scl are the most detailed observations of the entire dusty detached shell to date. For V644 Sco these are the first direct measurements of the detached shell. Also here we find that the dust most likely coincides with the gas shell. The observations are consistent with a scenario where the detached shells are created during a thermal pulse. The determined radii and widths will constrain hydrodynamical models describing the pre-pulse mass loss, the thermal pulse, and post-pulse evolution of the star.
We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC and AllWISE/NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 +- 1.6 msol, suggesting an initial mass well above 8~msol. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuses wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.
Expanding nebulae are produced by mass loss from stars, especially during late stages of evolution. Multi-dimensional simulation of these nebulae requires high resolution near the star and permits resolution that decreases with distance from the star , ideally with adaptive timesteps. We report the implementation and testing of static mesh-refinement in the radiation-magnetohydrodynamics code PION, and document its performance for 2D and 3D calculations. The bow shock produced by a hot, magnetized, slowly rotating star as it moves through the magnetized ISM is simulated in 3D, highlighting differences compared with 2D calculations. Latitude-dependent, time-varying magnetized winds are modelled and compared with simulations of ring nebulae around blue supergiants from the literature. A 3D simulation of the expansion of a fast wind from a Wolf-Rayet star into the slow wind from a previous red supergiant phase of evolution is presented, with results compared with results in the literature and analytic theory. Finally the wind-wind collision from a binary star system is modelled with 3D MHD, and the results compared with previous 2D hydrodynamic calculations. A python library is provided for reading and plotting simulation snapshots, and the generation of synthetic infrared emission maps using torus is also demonstrated. It is shown that state-of-the-art 3D MHD simulations of wind-driven nebulae can be performed using PION with reasonable computational resources. The source code and user documentation is made available for the community under a BSD3 licence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا