ﻻ يوجد ملخص باللغة العربية
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuses wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.
We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to
We examine the problem of estimating the mass range corresponding to the observed red supergiant (RSG) progenitors of Type IIP supernovae. Using Monte Carlo simulations designed to reproduce the properties of the observations, we find that the approa
We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new VLT-KMOS instrument. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = -0.52 $pm$
We investigate the red supergiant (RSG) population of M31, obtaining radial velocities of 255 stars. These data substantiate membership of our photometrically-selected sample, demonstrating that Galactic foreground stars and extragalactic RSGs can be
We present HI line profiles for various models of circumstellar shells around red giants. In the calculations we take into account the effect of the background at 21 cm, and show that in some circumstances it may have an important effect on the shape