ﻻ يوجد ملخص باللغة العربية
Latent feature models are widely used to decompose data into a small number of components. Bayesian nonparametric variants of these models, which use the Indian buffet process (IBP) as a prior over latent features, allow the number of features to be determined from the data. We present a generalization of the IBP, the distance dependent Indian buffet process (dd-IBP), for modeling non-exchangeable data. It relies on distances defined between data points, biasing nearby data to share more features. The choice of distance measure allows for many kinds of dependencies, including temporal and spatial. Further, the original IBP is a special case of the dd-IBP. In this paper, we develop the dd-IBP and theoretically characterize its feature-sharing properties. We derive a Markov chain Monte Carlo sampler for a linear Gaussian model with a dd-IBP prior and study its performance on several non-exchangeable data sets.
We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbour
Statistical models with latent structure have a history going back to the 1950s and have seen widespread use in the social sciences and, more recently, in computational biology and in machine learning. Here we study the basic latent class model propo
In this paper we derive locally D-optimal designs for discrete choice experiments based on multinomial probit models. These models include several discrete explanatory variables as well as a quantitative one. The commonly used multinomial logit model
Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent cl
The drawbacks in the formulations of random infinite divisibility in Sandhya (1991, 1996), Gnedenko and Korelev (1996), Klebanov and Rachev (1996), Bunge (1996) and Kozubowski and Panorska (1996) are pointed out. For any given Laplace transform, we c