ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermalization and entanglement following a non-relativistic holographic quench

254   0   0.0 ( 0 )
 نشر من قبل Ville Ker\\\"anen
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a holographic model for thermalization following a quench near a quantum critical point with non-trivial dynamical critical exponent. The anti-de Sitter Vaidya null collapse geometry is generalized to asymptotically Lifshitz spacetime. Non-local observables such as two-point functions and entanglement entropy in this background then provide information about the length and time scales relevant to thermalization. The propagation of thermalization exhibits similar horizon behavior as has been seen previously in the conformal case and we give a heuristic argument for why it also appears here. Finally, analytic upper bounds are obtained for the thermalization rates of the non-local observables.



قيم البحث

اقرأ أيضاً

We study thermalization in the holographic (1+1)-dimensional CFT after simultaneous generation of two high-energy excitations in the antipodal points on the circle. The holographic picture of such quantum quench is the creation of BTZ black hole from a collision of two massless particles. We perform holographic computation of entanglement entropy and mutual information in the boundary theory and analyze their evolution with time. We show that equilibration of the entanglement in the regions which contained one of the initial excitations is generally similar to that in other holographic quench models, but with some important distinctions. We observe that entanglement propagates along a sharp effective light cone from the points of initial excitations on the boundary. The characteristics of entanglement propagation in the global quench models such as entanglement velocity and the light cone velocity also have a meaning in the bilocal quench scenario. We also observe the loss of memory about the initial state during the equilibration process. We find that the memory loss reflects on the time behavior of the entanglement similarly to the global quench case, and it is related to the universal linear growth of entanglement, which comes from the interior of the forming black hole. We also analyze general two-point correlation functions in the framework of the geodesic approximation, focusing on the study of the late time behavior.
The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is investigated over the Vaidya-AdS geometry. We numerically determine the Hubeny-Rangamani-Takayanagi (HRT) surface which may be a hemi-torus or two disks, depending on the ratio of the inner radius to the outer radius of the annulus. More importantly, for some fixed ratio of two radii, it undergoes a phase transition or double phase transitions from a hemi-torus configuration to a two-disk configuration, or vice versa, during the thermalization. The occurrence of various phase transitions is determined by the ratio of two radii of the annulus. The rate of entanglement growth is also investigated during the thermal quench. The local maximal rate of entanglement growth occurs in the region with double phase transitions. Finally, if the quench process is fairly slow which may be controlled by the thickness of null shell, the region with double phase transitions vanishes.
Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint app roximation these probes are computed in AdS space in terms of invariant geometric objects - geodesics, minimal surfaces and minimal volumes. Our calculations for two-dimensional field theories are analytical. In our strongly coupled setting, all probes in all dimensions share certain universal features in their thermalization: (1) a slight delay in the onset of thermalization, (2) an apparent non-analyticity at the endpoint of thermalization, (3) top-down thermalization where the UV thermalizes first. For homogeneous initial conditions the entanglement entropy thermalizes slowest, and sets a timescale for equilibration that saturates a causality bound over the range of scales studied. The growth rate of entanglement entropy density is nearly volume-independent for small volumes, but slows for larger volumes.
In a quantum field theory, apparent thermalization can be a consequence of entanglement as opposed to scatterings. We discuss here how this can help to explain open puzzles such as the success of thermal models in electron-positron collisions. It tur ns out that an expanding relativistic string described by the Schwinger model (which also underlies the Lund model) has at early times an entanglement entropy that is extensive in rapidity. At these early times, the reduced density operator is of thermal form, with an entanglement temperature $T_tau=hbar/(2pi k_Btau)$, even in the absence of any scatterings.
We consider a holographic set-up where relativistic invariance is broken by a chemical potential, and a non-abelian internal symmetry is broken spontaneously. We use the tool of holographic renormalization in order to infer what can be learned purely by analytic boundary considerations. We find that the expected Ward identities are correctly reproduced. In particular, we obtain the identity which implies the non-commutation of a pair of broken charges, which leads to the presence of Goldstone bosons with quadratic dispersion relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا