ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Entropy of Annulus in Holographic Thermalization

96   0   0.0 ( 0 )
 نشر من قبل Yuxuan Liu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is investigated over the Vaidya-AdS geometry. We numerically determine the Hubeny-Rangamani-Takayanagi (HRT) surface which may be a hemi-torus or two disks, depending on the ratio of the inner radius to the outer radius of the annulus. More importantly, for some fixed ratio of two radii, it undergoes a phase transition or double phase transitions from a hemi-torus configuration to a two-disk configuration, or vice versa, during the thermalization. The occurrence of various phase transitions is determined by the ratio of two radii of the annulus. The rate of entanglement growth is also investigated during the thermal quench. The local maximal rate of entanglement growth occurs in the region with double phase transitions. Finally, if the quench process is fairly slow which may be controlled by the thickness of null shell, the region with double phase transitions vanishes.



قيم البحث

اقرأ أيضاً

We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by usi ng our numerical scheme. Then it is used to compute the HEE for the superconducting case. The cases we study show that in presence of a mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordstrom black hole phase. Interestingly, the effects of chemical imbalance are different in the contexts of black hole and superconducting phases. For black hole, HEE increases with increasing imbalance parameter while it behaves oppositely for the superconducting phase. The implications of these results are discussed.
72 - Chanyong Park 2018
We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincare AdS space with a finite cutoff can be reinte rpreted as that of the dual field theory deformed by either a boost or $T bar{T}$ deformation. For the boost case, we show that, although it trivially acts on the underlying theory, it nontrivially affects the entanglement entropy due to the length contraction. For a three-dimensional AdS, we show that the effect of the boost transformation can be reinterpreted as the rescaling of the energy scale, similar to the $T bar{T}$ deformation. Under the boost and $T bar{T}$ deformation, the $c$-function of the entanglement entropy exactly shows the features expected by the Zamoldchikovs $c$-theorem. The deformed theory is always stationary at a UV fixed point and monotonically flows to another CFT in the IR fixed point. We also show that the holographic entanglement entropy in a Poincare cutoff AdS space can reproduce the exact same result of the $T bar{T}$ deformed theory on a two-dimensional sphere.
115 - Nikolaos Tetradis 2021
We review the results of refs. [1,2], in which the entanglement entropy in spaces with horizons, such as Rindler or de Sitter space, is computed using holography. This is achieved through an appropriate slicing of anti-de Sitter space and the impleme ntation of a UV cutoff. When the entangling surface coincides with the horizon of the boundary metric, the entanglement entropy can be identified with the standard gravitational entropy of the space. For this to hold, the effective Newtons constant must be defined appropriately by absorbing the UV cutoff. Conversely, the UV cutoff can be expressed in terms of the effective Planck mass and the number of degrees of freedom of the dual theory. For de Sitter space, the entropy is equal to the Wald entropy for an effective action that includes the higher-curvature terms associated with the conformal anomaly. The entanglement entropy takes the expected form of the de Sitter entropy, including logarithmic corrections.
We compute entanglement entropy (EE) of a spherical region in $(3+1)$-dimensional $mathcal{N}=4$ supersymmetric $SU(N)$ Yang-Mills theory in states described holographically by probe D3-branes in $AdS_5 times S^5$. We do so by generalising methods fo r computing EE from a probe brane action without having to determine the probes back-reaction. On the Coulomb branch with $SU(N)$ broken to $SU(N-1)times U(1)$, we find the EE monotonically decreases as the spheres radius increases, consistent with the $a$-theorem. The EE of a symmetric-representation Wilson line screened in $SU(N-1)$ also monotonically decreases, although no known physical principle requires this. A spherical soliton separating $SU(N)$ inside from $SU(N-1)times U(1)$ outside had been proposed to model an extremal black hole. However, we find the EE of a sphere at the solitons radius does not scale with the surface area. For both the screened Wilson line and soliton, the EE at large radius is described by a position-dependent W-boson mass as a short-distance cutoff. Our holographic results for EE and one-point functions of the Lagrangian and stress-energy tensor show that at large distance the soliton looks like a Wilson line in a direct product of fundamental representations.
155 - Song He , Feng-Li Lin , 2017
We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. W e evaluate the single-interval Renyi entropy and entanglement entropy for a heavy primary state in short interval expansion. We verify the results of Renyi entropy by two different replica methods. We find nontrivial results at the eighth order of short interval expansion, which include an infinite number of higher order terms in the large central charge expansion. We then evaluate the relative entropy of the reduced density matrices to measure the difference between the heavy primary state and thermal state of canonical ensemble, and find that the aforementioned nontrivial eighth order results make the relative entropy unsuppressed in the large central charge limit. By using Pinskers and Fannes-Audenaert inequalities, we can exploit the results of relative entropy to yield the lower and upper bounds on trace distance of the excited-state and thermal-state reduced density matrices. Our results are consistent with subsystem weak ETH, which requires the above trace distance is of power-law suppression by the large central charge. However, we are unable to pin down the exponent of power-law suppression. As a byproduct we also calculate the relative entropy to measure the difference between the reduced density matrices of two different heavy primary states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا